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Abstract

Superpixel is generated by automatically clustering pix-
els in an image into hundreds of compact partitions, which
is widely used to perceive the object contours for its excel-
lent contour adherence. Although some works use the Con-
volution Neural Network (CNN) to generate high-quality
superpixel, we challenge the design principles of these net-
works, specifically for their dependence on manual labels
and excess computation resources, which limits their flexi-
bility compared with the traditional unsupervised segmen-
tation methods. We target at redefining the CNN-based su-
perpixel segmentation as a lifelong clustering task and pro-
pose an unsupervised CNN-based method called LNS-Net.
The LNS-Net can learn superpixel in a non-iterative and
lifelong manner without any manual labels. Specifically, a
lightweight feature embedder is proposed for LNS-Net to
efficiently generate the cluster-friendly features. With those
features, seed nodes can be automatically assigned to clus-
ter pixels in a non-iterative way. Additionally, our LNS-Net
can adapt the sequentially lifelong learning by rescaling
the gradient of weight based on both channel and spatial
context to avoid overfitting. Experiments show that the pro-
posed LNS-Net achieves significantly better performance on
three benchmarks with nearly ten times lower complexity
compared with other state-of-the-art methods.

1. Introduction
Superpixel segmentation aims to over-segment an im-

age into hundreds of compact partitions, i.e. superpixel, by
clustering the pixels based on both low-level color features
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Figure 1. The illustration of the workflow for the proposed LNS-
Net, where the top row is the visualization of the features and the
bottom is the distribution of the labels jetting in the feature space.
The blue ”x” is the generated seed node.

and spatial features. Benefiting from concerning the spatial
cues, the superpixel can be efficiently generated with high
contour adherence. Therefore, it is widely used by both
traditional machine learning (ML) and convolution neural
network (CNN) to reduce computational complexity or per-
ceive the contours of objects[32, 12, 3, 31].

Many superpixel segmentation methods arise in the last
decade including the gradient-based[1, 2, 18, 19, 5] and the
graph-based methods[17, 15, 13, 16]. The gradient-based
methods iteratively cluster the pixels in RGB or LAB space
with limited spatial distance to refine the initialized cluster
centers. This type of method has high efficiency, but suffers
from low adherence due to their insufficient features. On the
other hand, the graph-based algorithms usually have high
adherence because they enrich the features by constructing
an undirected graph. Afterwards, the subgraphs are gener-
ated as superpixel by cutting or adding edges to optimize a
target energy function, which costs a lot of time.

Recently, benefiting from the prosperity of the CNN,
some approaches employ the CNN to learn a suitable em-
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bedding space for superpixel segmentation and then clus-
ter the pixels in this new feature space with clustering
methods[11, 27, 30, 28]. Even though they improve the
performance by a large margin, some problems come into
being simultaneously. Firstly, majority of the CNN-based
methods[30, 11, 28] need human-labeled ground truth to su-
pervise the network training which requires additional hu-
man resources to label all the pixels in images. Secondly,
their offline training step needs to store all the training sam-
ples, which demands large amounts of memory and limits
their flexibility to transfer the network into other domains.
Finally, some CNN-based methods still need to iteratively
update the coarse cluster centers (usually the center position
of each grids), which is inconvenient and time-consuming.

To solve these problems, we redefine the CNN-based su-
perpixel segmentation as a lifelong learning task[22, 9, 4]
which can sequentially learn a unified model online. In ad-
dition, a lightweight unsupervised CNN-based superpixel
segmentation method called LNS-Net is proposed to learn
superpixel in a non-iterative and lifelong manner. The LNS-
Net is composed of three parts: feature embedder module
(FEM), non-iterative clustering module (NCM) and gradi-
ent rescaling module (GRM). Specifically, in the forward
step shown in Fig. 1, FEM firstly embeds the original fea-
ture into a cluster-friendly space to protect detail cues with
low complexity. Based on the cluster-friendly features, the
proposed NCM uses a seed estimation layer (SEL) to learn
the spatial shift of the central position, which directly es-
timates the optimal cluster centers, i.e. the seed nodes.
Then, the superpixel can be non-iteratively generated by
the cluster layer (CL) of NCM that assigns the cluster for
each pixel based on their similarity with the feature of seed
nodes. Moreover, the GRM is proposed to solve the catas-
trophic forgetting caused by lifelong learning during back-
ward step. It is consisted of gradient adaptive layer (GAL)
and gradient bi-direction layer (GBL), which are used to
avoid over-fitting by rescaling the gradient of each weight
parameter based on channel importance and spatial context.
A range-limited cluster loss is also proposed to effectively
train our network without any manual labels.

In a nutshell, our main contributions are threefold: 1) To
our knowledge, our work is the first to define the superpixel
segmentation as lifelong learning task theoretically and give
a corresponding solution. 2) A lightweight LNS-Net is pro-
posed to non-iteratively generate the superpixel, which can
be lifelong trained without any manual label. 3) Experi-
ments show that our LNS-Net has higher performance than
other unsupervised methods and is also comparable with the
supervised CNN-based methods.

2. Related Works
Traditional Superpixel Methods: The traditional su-
perpixel segmentation methods include the gradient-based

methods and the graph-based methods. The former itera-
tively cluster the pixels with limited spatial distance solely
based on their color feature. Achanta et al. proposed the
simple linear iteratively clustering (SLIC)[1] to efficiently
generate superpixel by limiting the search range of k-means.
To further improve the efficiency, Achanta et al. subse-
quently enabled the method to update cluster center and ar-
range the label of pixels simultaneously by proposing the
simple non-linear iteratively clustering (SNIC)[2]. Liu et
al. designed the manifold simple linear iteratively clus-
tering (MSLIC)[18, 19], which adopts an adaptive search
range for SLIC. Shen et al. utilized another robuster clus-
ter method called the density-based spatial clustering with
noise (DBSCN)[24] to generate superpixel with stronger
spatial consideration. Different with the gradient-based
methods, the graph-based methods firstly construct an undi-
rected graph based on the feature of input image and then
generate superpixel by creating sub-graphs. Shen et al. pro-
posed the lazy random walk (LRW)[23], which adds a self-
loop into the random walk graph to make the walking pro-
cess lazy and can be extended into the superpixel segmen-
tation with the help of a shape-concerned energy term. Liu
et al. elaborated an entropy rate superpixel (ERS)[17] that
maximizes the random walk entropy by continually adding
edges into the graph model. Li et al. proposed the lin-
ear spectral superpixel clustering (LSC)[16] to approximate
the normalized cut (NCut)[25] energy by weighted k-means
cluster. Recently, Kang et al. designed the dynamic random
walk (DRW)[15, 13], which efficiently improves the adher-
ence of superpixel by proposing a weighted random walk
entropy with limited walk range.

CNN-based Superpixel Methods: The CNN-based super-
pixel segmentation methods use the CNN to extract fea-
tures and then cluster the pixels based on these features.
Tu et al. firstly adopted the CNN in superpixel segmenta-
tion by proposing a segmentation-aware loss (SEAL)[28]. It
uses the ground truths of semantic segmentation (or bound-
ary detection) to supervise the feature learning. However,
SEAL cannot generate superpixel in an end-to-end mode
because it adopts the time-consuming ERS[17] as post-
processing. Jampani et al. proposed an end-to-end super-
pixel segmentation network called superpixel sample net-
work (SSN)[11] by integrateing SLIC. SSN can be easily
used to assist other vision tasks such as semantic segmen-
tation with the task-specific loss. But, it still needs man-
ual labels to supervise the network training and requires
iteratively updating the predefined cluster centers to gen-
erate superpixel. Yang et al. designed a fully-connected
convolutional network (S-FCN)[30] that adopts an encoder-
decoder structure, which simplifies the iteratively cluster-
ing step of SSN by assigning each pixel into the 9-neighbor
grid. Though S-FCN improves the segmentation efficiency,
it is still supervised by the segmentation labels, and needs



upsampling the input images to generate large number of
superpixel. Recently, Suzuki utilized the CNN to unsuper-
visely generate superpixel with regular information maxi-
mization (RIM)[27]. It trains a randomly initialized CNN
to reconstruct the input image while minimizing the entropy
among each superpixel. However, it needs to reinitialize the
parameters of the network and takes a long time to reach
convergence when generating superpixel for each image.

3. Method
In this section, we begin with defining the superpixel

segmentation as the lifelong learning task, where the seg-
mentation process of each image can be viewed as an inde-
pendent clustering task. Then, we propose a convolutional
network structure called LNS-Net which contains: 1) fea-
ture embedder module (FEM); 2) non-iterative clustering
module (NCM); 3) gradient rescaling module (GRM). Fi-
nally, we give our loss function, which does not require any
manual labels to supervise training process.

3.1. Problem Definition

In general, the learning strategy of existing CNN-based
superpixel segmentation methods can be divided into two
categories. One is the multi-task learning strategy[11, 30],
which learns a unified embedding based on the whole im-
age set depicted in Figs. 2 A. It updates the weight parame-
ter based on all images during the whole training process
which requires large amounts of computation resources.
The other is the isolated learning strategy[27], which re-
spectively learns a unique embedding for each image as
shown in Figs. 2 B. Though this strategy does not require
to maintain all the images, a unique parameter space needs
to be repeatedly found for each image, which is time-
consuming and cannot generalize to other images. In or-
der to overcome these drawbacks, our proposed LNS-Net
sequentially refines the unified embedding based on a cer-
tain image, which is a classic case of lifelong learning. As
shown in Figs. 2 C, our lifelong learning strategy only fo-
cuses on one image per epoch and intends to maintain the
performance for the images learned in prior epoches simul-
taneously.

To theoretically define our sequential learning strategy,
we start with the segmentation of a specific image I , which
aims to segment the image I into K compact regions by as-
signing the label for each pixel of the entire image map LI .
It can be seen as a clustering task T I where each pixel i
with feature xi = {r, g, b, px, py} forms the samplesXI =
{x1,x2, ...,xN}. Supposing the index set of the cluster
centers is Sc, a following cluster step LI = c(ZI |Sc) is
used to generate the label for each pixel, where c(·) is a
cluster function. ZI = e(XI |We) is a learned embedding
map to project the samples XI into a clustering-friendly
space with function e(·). The learning weight We can be

optimized by We = We − α ∗ dWe with dWe = ∂L
∂We

,
where L is the loss function and α is the learning rate.

Further, assuming that we have a set of images I =
{I1, I2, ..., In}, the segmentation of I can be modeled as
a series of clustering tasks T = {T 1, T 2, ..., Tn}. Differ-
ent from the existing models that either obtain the embed-
ding e(X|We) by optimizing We based on the whole set
T[11, 30] or separately training an embedding ei(Xi|Wi

e)
for each task T i[27] to obtain the cluster-friendly feature
Z, we aim at optimizing each task T i separately to gener-
ate a unified embedding function e(Xi|We). During the
optimization, the retentivity of We for prior tasks is also
enhanced by a scaling function ψ(dW). Finally, with the
cluster-friendly features Z, pixels can be labeled by the
cluster function L = c(Z|S) with optimal seed nodes S.

Algorithm 1 Flow of the proposed LNS-Net
Input: Cluster tasks T , Feature set X , Max epoches M

1: Initialize the learning rate and parameters
2: for T i in T do
3: Select the pixels featureXi, Set m = 0
4: for m < M do
5: Get the Zi = e(Xi|We) by FEM.
6: Get the labels L = c(Zi|S) by NCM.
7: Rescale the gradient: dWe = ψ(dWe) by GRM.
8: Backward update We and other parameters.
9: end for

10: end for

The flow of our LNS-Net is given in Algorithm 1. We
separately optimize each clustering task T i and train a net-
work that contains three proposed modules to implement
the functions e(·), c(·) and ψ(·) respectively. Once T i has
been optimized, we start to focus on the next task Ti+1 until
all tasks are trained.

3.2. Network Design

The structure of proposed LNS-Net shown in Fig. 3 con-
tains three parts: 1) the proposed lightweight FEM embeds
the original feature into a cluster-friendly space; 2) the pro-
posed NCM assigns the label for pixels with the help of
a seed estimation module, which automatically estimates
the indexes of seed nodes; 3) the proposed GRM adaptively
rescales the gradient for each weight parameter based on the
channel and spatial context to avoid catastrophic forgetting
for the sequential learning.
Feature Embedder Module: Actually, superpixel seg-
mentation is based on the low-level color and spatial fea-
tures rather than the high-level semantic features. We ar-
gue that the feature embedders used by other CNN-based
methods[11, 30, 27] are too redundant for the superpixel
segmentation, due to their large number of channels and
receptive field. As a alternative, our FEM only uses two
convolution layers with an additional atrous spatial pyramid
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Figure 2. The training strategy of our LSN-Net and other learning-based superpixel segmentation methods. “Ellipses” with different colors
mean different clustering tasks (images). Each “dot” means the parameters of the network during training progress. A. The multi-task
learning strategy, which learns a unified embedding by optimizing the whole task set. B. The isolated learning strategy, which respectively
learns a unique embedding for each task. C. The lifelong learning strategy of our proposed LNS-Net, which learns a unified embedding
by separately optimizing each task.
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pooling (ASPP)[7] to enlarge the receptive field rather than
go deeper with spatial pooling, which can better preserve
details with fewer parameters. As shown in Fig. 3 A, the
LAB (or RGB) features and the position indexes of pixels
are concatenated and fed into the ASPP structure to capture
multi-scale information:

Xm = σ(concat(X ∗H0,X ∗H1,X ∗H2)) (1)

where “∗” is the convolutional operator, X ∈ RN×5 is the
input feature andXm ∈ RN×Cm is the multi-scale feature.
Hd ∈ R5×Cm

3 is the convolution with dilation range d, σ
is the non-linear function implemented by ReLU. Then two
3× 3 convolution are used to embed the multi-scale feature

Xm into the cluster-friendly space:

Z = σ(σ(Xm ∗W1) ∗W2)) (2)

where Z ∈ RN×C2 is the cluster-friendly feature, W1 ∈
RCm×C1 ,W2 ∈ RC1×C2 are the parameter matrixes.
Non-iterative Clustering Module: Once the embedding
feature Z has been obtained, the superpixel can be gener-
ated by clustering the features inZ with the initialized clus-
ter centers Sc. However, those cluster centers usually have
a coarse distribution such as the center of grid. The cluster
step with time complexity O(N ∗ K) needs to iteratively
refine the distribution of the centers. Such refining pro-
cess is unintegrable in majority cases. Though the recent



work[11] makes it integrable, it still needs nearly 10 iter-
ators to reach convergence. To avert this time-consuming
process, our NCM uses a seed estimation layer (SEL) to es-
timate a satisfactory cluster center distribution based on Z
by learning the offsets to shift those coarse centers into a
more reasonable distribution, i.e. the seed nodes S.

As shown in Fig. 3 C, Z is adaptively pooled into a low-
resolution Zk ∈ RK×C2 , where K is the number of target
superpixel. Then, a linear project with sigmoid activation
is used to learn the offsets contained by a two-dimension
vectors Fi ∈ RK×2:

F = sigmoid(Zk ∗Ws) (3)

where Ws ∈ RC2×2 is the parameter matrix of the linear
project, which can be learned by Adam[14]. The two di-
mensions of F = {rr, cc} can be viewed as the crosswise
shift ratio rr and the longitudinal shift ratio cc. Then, we
restrict their shift scopes inside the corresponding grid by:

4r = (rr − 0.5) ∗R, 4c = (cc− 0.5) ∗ C (4)

where R, C are the number of rows and columns of the
image, respectively. Next, the offsets (4r,4c) are added
on the corresponding center to obtain the optimized seed
nodes S:

S = Sc + (4r ∗R+4c) (5)

where Sc is the coarse clustering center indexes and S is
the output seed node indexes.

Finally, the clustering layer (CL) of NCM is used to as-
sign the labels L for pixels based on S. The CL firstly
adopts the t-distribution kernel to measure the similarity be-
tween each pixel and seed node:

Pik =
(1 + ||Zi −ZSk

||2)− 1
2∑

k (1 + ||Zi −ZSk
||2)− 1

2

(6)

where P =∈ RN∗K is the soft assignment between each
pixel and seed node. Finally, the label of each pixel can be
obtained by selecting the seed with maximal similarity:

Li = argmaxk(Pi0,Pi1, ...,Pik) (7)

Gradient Rescaling Module: Considering the images are
sequential in our learning step, the network will face the
catastrophic forgetting that the network over-fits the domain
of current task without concerning prior tasks. To overcome
this problem, our proposed GRM serves two purposes: 1)
using the proposed gradient adaptive layer (GAL) to per-
ceive the importance for the gradient on different feature
channels to avoid over-fitting; 2) using the proposed gradi-
ent bi-direction layer (GBL) to generate confrontation based
on the spatial context to improve generalizability.

Specifically, both GAL and GBL are backed by a recon-
struction head that reconstructs the clustering-friendly fea-
ture into the original input features (both spatial and color
features) with an additional linear project:

Xr = Z ∗Wr (8)

where Xr ∈ RN×5 is the reconstruction feature whose
first three columns are the color features (RGB/LAB) and
the rest are spatial features (position indexes), which is re-
spectively supervised by the reconstruction loss Lr. Wr ∈
RC2×5 is the parameter for the linear project.

Based on the reconstruction head, the mean reconstruc-
tion strength g(Wr) can be defined to represent the impor-
tance for the channel of the cluster-friendly feature:

g(Wr) = (
∑

i=1,2,3

|Wr
:,i/3|)� (

∑
i=4,5

|Wr
:,i/2|)T (9)

where � is the Hadamard product. The higher g(Wr):,c is,
the more Z:,c contributes for reconstructing X in forward-
propagation, i.e. this channel has already better fit the do-
main of current task. Thus, even though g(Wr):,c drops
in the following tasks, which causes a high gradient dW:,c,
this weight Wr

:,c should be maintained to avoid over-fitting.
To achieve this, a vector m ∈ R1×C2 is defined to pre-
serve the historical g(Wr):,c, which is initialized as an all-
one tensor and progressively updated during the sequential
training step:

m = λ ∗ g(Wr) + (1− λ) ∗m (10)

where λ is to adjust current and history gradient scale.
Based on m, our GAL is designed to rescale the gra-

dient of the weight parameter in FEM to avoid overfitting,
which works as a “pseudo-function”Ra(·) with the follow-
ing forward- and back-propagation:

Ra(Xn,:) =Xn,: ∗ I
dRa

dXn,:
= ψa ∗ I =

g(Wr)

g(Wr) +m
∗ I

(11)

where I ∈ RC2×C2 is the identity matrix. In the forward-
propagation, GAL acts as an identity transform which per-
cepts the importance for each channel by g(Wr) to pre-
serve the historical memory matrix m. During back prop-
agation, GAL scales the gradient of the weight parameters,
which lowers the gradient of weights corresponding to the
channel with highmc to avoid over-fitting the current task.

Though the proposed GAL can avoid over-fitting by con-
cerning the historical strength of the channel, it treats each
pixel equally without considering their spatial context. Ac-
tually, the superpixel segmentation is a dense prediction
task, which aims to balance the contour adherence and spa-
tial compactness. This requires the model biasing the color



features for pixels near contours, while concerning both the
color and the spatial features for pixels in smooth areas. To
compensate this, GBL is proposed to rescale the gradient
based on the spatial context to avoid overfitting. It gener-
ates bi-direction gradient scale based on the contour mapB
to confound the reconstruction strength for the spatial fea-
tures of the pixels near contours. The forward- and back-
propagation of our GBL are:

Rb(Xn,c) =Xn,c

dRb

dXn,c
= ψb

n =

{
1 , Bn ≤ ε

−Bn , Bn > ε

(12)

where Rb(·) is the “pseudo-function” of our GBL. In the
forward step the GBL also acts as an identity map. While in
the backward step, the GBL generates a bi-direction gradi-
ents for the different pixels i based on their contour mapBi,
which makes the pixels near contours bias the color feature
reconstruction even though having a confounding spatial in-
formation to enhance generalizability.

3.3. Loss Function

A two-terms loss is used to supervise the sequential
training step for our network, which can be formulated as:

L = Lc + β ∗ Lr (13)

where Lc is the clustering loss that encourages the network
to group pixels with similar probability. Lr is the recon-
struction loss to help the cluster-friendly feature Z concern
both color details and spatial information. β is used to bal-
ance the two losses.
Cluster Loss: We propose a range-limited cluster loss to
train our network without requiring manual label. It can be
formulated as a regularized KL divergence between the lim-
ited range soft assignment P̃ with its reference distribution
Q̃:

Lc =
∑
i

∑
k

Q̃iklogQ̃ik − Q̃iklogP̃ik + l(P ) (14)

where l(·) is a regular term. The limited range soft assign-
ment P̃ enhances the probability for allotting pixels into its
“Top-n” nearest seed nodes, which improves the compact-
ness of the segmentation result. Specifically, the spatial dis-
tance Dik between the pixel i and the seed node k is firstly
calculated based on the l1 distance on their spatial indexes.
Then, we define Vi = Top-nk(Di0,Di1, ...,Dik) as the
“Top-n” seeds set for pixel i and use it to build a mask ma-
trix, which masks the elements between the pixel-seed pairs
with large distance:

Mik =

{
0, k ∈ Vi

1, k /∈ Vi

(15)

Finally, the limited range soft assignment P̃ = P �M can
be obtained by adding masks on the original assignment P ,
i.e., where � is the Hadamard product.

To improve the cluster purity and penalize the superpixel
with too large size, we follow Xie et al.[29] and define Q̃
without requiring the manual labels:

Q̃ik =
P̃ 2

ik/
∑

i P̃ik∑
j(P̃

2
ik/
∑

i P̃ik)
(16)

A regularized term is also added to avoid the local optimum
where pixels are assigned into the seed node that not in Vi:

l(P ) =
P �M

P � (1−M)
(17)

Reconstruction Loss: Reconstruction loss is a crucial part
for our proposed GRM to rescale the gradient of weight pa-
rameter. As discussed in Sec.3.2, Lr supervises both recon-
struction of the input color and spatial features, which can
be define as:

Lr = Lrc + φ ∗ Lrs (18)

Lrc is the reconstruction loss of color feature, Lrs is the re-
construction loss of spatial feature and φ controls the trade-
off between Li

rc and Li
rs . Specifically, MSELoss between

the reconstruction result and original input is used as the
reconstruction loss for Lrc and Lrs .

From another view, due to the bi-direction gradient gen-
erated by our GBL, the reconstruction loss for our network
is also equivalent to :

Lr =
∑
i/∈Vb

(Li
rc +φ∗L

i
rs)+

∑
i∈Vb

(Li
rc−Bi ∗φ∗Li

rs) (19)

where Vb = {n|Bn > ε} is the counter pixel set. In
Eq. (19), the spatial reconstruction part for pixels near con-
tours, i.e.

∑
i∈Vb

(Bi ∗ φ ∗ Li
rs), serves as a regularization

term that avoids the cluster-friendly feature map Z paying
much attention on the spatial feature for the pixels in Vb.

4. Experiment
We conduct experiments on three datasets to demonstrate

the effectiveness of the proposed model. We firstly intro-
duce the settings of our experiment including the implemen-
tation details of our LNS-Net and the evaluation metrics.
Then, ablation studies are performed on BSDS500 dataset
to evaluate the different modules of our LNS-Net. Finally,
we compare our proposed LNS-Net with other superpixel
segmentation methods.

4.1. Settings

Implementation Details: Our LNS-Net is implemented
with PyTorch. The numbers of the three channels in FEM



(a) Ablation Experiments Result (b) BSDS dataset

(c) DRIVE dataset (d) DME dataset

Figure 4. The experimental results for ablation strudies of the proposed LNS-Net and the comparison for different superpixel segmentation
methods on the BSDS, DRIVE, DME datasets. Better view in color and zoom in four times.

are set as Cm = 10, C1 = 10, C2 = 20. For the loss
function, we set the balance parameter β, φ and the neigh-
bor number n as 10, 1, 9 respectively. During the se-
quential training step, each image is sequentially trained 50
epoches where the first 40 epoches focus on feature learn-
ing so Ws of the seed estimator layer is locked. The last 10
epoches serve as updating the seed distribution, where all
the weights of FEM are locked. Adam [14] with learning
rate 0.0003 is used to optimize the parameters. Note that
our training step do not require any manual label. And in
the test step, only our FEM and NCM are used to generate
superpixel efficiently.
Evaluation Metrics: In our experiments, the Boundary Re-
call (BR), the boundary Precision (BP), the Achievable Seg-
mentation Accuracy (ASA) and the F-beta Score (F) are
used to evaluate the superpixel segmentation. Considering
that the recall is more important than the precision for super-
pixel segmentation, beta is set 4 for F-beta. For the dataset
that has more than one groundtruth such as BSDS500[21],
we choose the best one among all the ground truths as the
listed score. Moreover, like SSN[11] and RIM[27], we also
use the same strategy to enforce the spatial connectivity be-
fore calculating the evaluation metric.

4.2. Ablation Study

Ablation studies are conducted on the BSDS500
dataset[21] to show the effectiveness of the proposed mod-
ules. We explain three type LNS-Net structures in details:
LNS-Net1 is the most simple backbone, which only uses
FEM to embed the feature and cluster the pixels with grid
seed node; LNS-Net2 adds SEL of our proposed NCM to
automatically generate seed nodes; LNS-Net3 further adds
GRM to adaptively rescale the gradient of weight parame-
ter based on reconstruction results to avoid over-fitting by
concerning feature channel and spatial context. Note that,

the contour map generated by both unsupervised learned
methods (Sobel, Canny[6]) and supervised learned methods
(PB[20], BDCN[10]) are also tested for the proposed GRM.

The performance of these models is shown in Fig. 4(a).
It can be seen that, even using the simple grid seed
nodes (LNS-Net1), our model outperforms the unsuper-
vised method RIM[27] by a large margin profited by the
cluster-friendly feature space generated by our FEM. While,
adding the proposed seed estimation layer to automatically
generate seed nodes (LNS-Net2), the BR, ASA, F are fur-
ther improved facilitated by the more suitable seed distribu-
tion. Next, when the proposed GRM is added (LNS-Net3),
overfitting is avoided, bringing an obvious improvement in
the four evaluation criteria. Moreover, it can be also seen
that unsupervised contour (dotted line) are comparable to
the supervised-learned contours (full line), which means our
GRM is not sensitive to different contour priors.

4.3. Results

In this section, three datasets from different domains are
used to compare the performance of our proposed LNS-
Net with other superpixel segmentation algorithms, includ-
ing the graph-based ERS[17], LSC[16], the gradient-based
SNIC[2] and the CNN-based SSN[11], RIM[27]. Visual-
ization of the segmentations results of these methods on the
three datasets are shown in Fig. 5.
BSDS500 dataset[21] is the standard benchmark for super-
pixel segmentation which contains 200 training images, 100
validation images and 200 test images. The size of image
in this dataset is 481 × 321. Each image has more than
5 segmentation ground truths labeled by different person.
Thus, we choose one of the ground truth that can achieve
the highest segmentation scores in this study. Consider-
ing that SSN[11] is a supervised superpixel segmentation
method that needs training the model on the training set and
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Figure 5. The quantitative results for different superpixel segmentation methods on the BSDS dataset (top row), DRIVE dataset (middle
row) and DME dataset (bottom row). Better view in color and zoom in four times.

validation set to optimize the parameters, we only compare
the performance on the test set for all superpixel segmen-
tation method mentioned above. Quantitative results on
BSDS dataset are shown in Fig. 4(b), it can be seen that
our LNS-Net has the highest performance among all the
unsupervised superpixel segmentation methods (ERS[17],
SNIC[2], LSC[16], RIM[27]). This benefits from our se-
quential training strategy, which can unsupervisely optimize
the model parameters. Moreover, our LNS-Net is more sen-
sitive to the contours in a broad sense rather than only the
semantic boundaries as shown in Fig. 5. This trait con-
tributes to our higher BR than the supervised segmentation
method SSN.

DRIVE dataset[26] is consisted of 40 retinal images with
size 565× 584 and the corresponding ground truth for their
blood vessel. The domain of DRIVE dataset are very differ-
ent from the images of BSDS500 as shown in Fig. 5, thus
the same models trained on BSDS500 from each learning-
based method are used to test their generalizability. Exper-
imental results of the different methods on these 40 retinal
images are listed in Fig. 4(c). It can be seen that only graph-
based methods ERS[17] has higher BR and F than our LNS-
Net, because its graph model concerns more global struc-
ture of the blood vessel than the other methods. Neverthe-
less, our LNS-Net is 46 times faster than ERS and has more
regular shape of superpixel as shown in Fig. 5. Moreover,
our LNS-Net has the highest ASA, indicating that the su-
perpixel generated by our LNS-Net has the highest upper
bound for adhering the blood vessel.

Duck DME dataset[8] contains 610 B-scans from 10 sub-
jects who have Diabetic Macular Edema (DME). The size
of each B-scan is 565×584 and only 110 of them have man-
ual label for the retina border near their macular. Thus, we
select 110 labeled B-scans and crop them into 464× 496 to
focus their macular area. For each learning-based method,
we also use the same model trained on BSDS500 to segment

the three-channel B-scans that expanded from gray scale.
Experimental results are shown in Fig. 4(d), and it can be
seen that all scores of our LNS-Net are much more higher
than the others, indicating that its effectiveness on catching
weak contours for the medical images. Further, the style of
B-scans in the DME dataset is also very different from the
images in BSDS500 and contain noise as shown in Fig. 5.
We can see that the performance of learning-based method
SSN deteriorate seriously in the DME dataset, while our
LNS-Net can still have a satisfactory result, showing its ro-
bust generalizability.

Discussion: In general, benefiting from the proposed on-
line training step, both the visual impression and the quan-
titative results demonstrate that our proposed LNS-Net is
able to generate better superpixel compared with the un-
supervised methods. Even though using an unsupervised
sequential training strategy, the superpixel segmentation re-
sults generated by LNS-net are still comparable with the su-
pervised learning-based methods. Moreover, LNS-Net has
better generalizability with much less complexity (9 times
and 20 times lower in Flops and model size than SSN, re-
spectively) as shown in Table. 1.

However, there are still some drawbacks in our LNS-Net,
which expected to be addressed in future study. Firstly, due
to the sequential training strategy, our model cannot reach
complete convergence as the other learning-based methods
do. This leads to the existence of trivial regions in the super-
pixel generated by LNS-Net and needs post-processing to
remove them. Secondly, LNS-Net can generate superpixel
with relatively regular shapes in the smooth area promoted
by the spatial consideration of GBL. But, when facing back-
ground with complex texture, the boundary map that assists
GBL will contain noises and make the shape of superpixel
irregular. Finally, although our LNS-Net uses a lightweight
convolutional network and achieves real-time segmentation
using GPU, the cluster step still needs to generate distance



matrix with N ∗ K dimension, which is inefficient when
calculated by CPU with a large K.

Table 1. The performance and complexity of methods for generat-
ing 100 superpixel on BSDS dataset with image size 481 ∗ 321

Time(ms) Flops(G) Size(K) ASA Labels Device
SNIC 85 - - 0.943 × CPU
LSC 269 - - 0.953 × CPU
ERS 2540 - - 0.953 × CPU
SSN 260 13.85 214.5 0.970 X GPU
RIM 34842 64.15 416.14 0.953 × GPU
Ours 55 1.15 11.22 0.962 × GPU

5. Conclusion
To our best knowledge, this paper is the first work that

views superpixel segmentation as a lifelong clustering task.
Based on this basis, we propose a CNN-based superpixel
segmentation method called LNS-Net. The proposed LNS-
Net contains three parts: FEM, NCM, GRM, which is re-
spectively used for feature generation, non-iteratively clus-
tering, and over-fitting avoidance. Experiments show the ef-
fectiveness of our LNS-Net in three benchmarks including
two medical images datasets. Our method is both efficient
and accurate, enabling low latency superpixel generation.
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[21] Arbeláez P, Maire M, Fowlkes C, and Malik J. Contour de-
tection and hierarchical image segmentation. IEEE Trans.
Pattern Anal. Mach. Intell., 33(5):898–916, 2011. 7

[22] Q. She, F. Feng, X. Hao, Q. Yang, and Rhm Chan. Openloris-
object: A robotic vision dataset and benchmark for lifelong
deep learning. In 2020 IEEE International Conference on
Robotics and Automation (ICRA), 2020. 2

[23] Jianbing Shen, Yunfan Du, Wenguan Wang, and Xuelong
Li. Lazy random walks for superpixel segmentation. IEEE
Trans. Image Process., 23(4):1451–1462, 2014. 2

[24] Jianbing Shen, Xiaopeng Hao, Zhiyuan Liang, Yu Liu, Wen-
guan Wang, and Ling Shao. Real-time superpixel segmen-



tation by dbscan clustering algorithm. IEEE Trans. Image
Process., 25(12):5933–5942, 2016. 2

[25] Jianbo Shi and Jitendra Malik. Normalized cuts and im-
age segmentation. IEEE Trans. Pattern Anal. Mach. Intell.,
22(8):888–905, 1997. 2

[26] J. Staal, M.D. Abramoff, M. Niemeijer, M. A. Viergever, and
B. Van Ginneken. Ridge-based vessel segmentation in color
images of the retina. IEEE Transactions on Medical Imag-
ing, 23(4):501–509, 2004. 8

[27] Teppei Suzuki. Superpixel segmentation via convolutional
neural networks with regularized information maximization.
In IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP), 2020. 2, 3, 7, 8

[28] Wei-Chih Tu, Ming-Yu Liu, Varun Jampani, Deqing Sun,
Shao-Yi Chien, Ming-Hsuan Yang, and Jan Kautz. Learn-
ing superpixels with segmentation-aware affinity loss. In Int.
Conf. Comput. Vis., pages 568–576, 2018. 2

[29] Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised
deep embedding for clustering analysis. Computer ence,
2015. 6

[30] Fengting Yang, Qian Sun, Hailin Jin, and Zihan Zhou. Super-
pixel segmentation with fully convolutional networks. 2020.
2, 3

[31] Lizhu Ye, Lei Zhu, Xuejing Kang, and Anlong Ming. Adap-
tive occlusion boundary extraction for depth inference. In
IEEE Int. Conf. Image Process. (ICIP), pages 4025–4029.
IEEE, 2019. 1

[32] Donghun Yeo, Jeany Son, Bohyung Han, and Joon Hee Han.
Superpixel-based tracking-by-segmentation using markov
chains. In IEEE Conf. Comput. Vis. Pattern Recog. (CVPR),
pages 511–520, 2017. 1


