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Abstract

Deep neural networks are able to memorize noisy labels
easily with a softmax cross entropy (CE) loss. Previous
studies attempted to address this issue focus on incorpo-
rating a noise-robust loss function to the CE loss. However,
the memorization issue is alleviated but still remains due
to the non-robust CE loss. To address this issue, we fo-
cus on learning robust contrastive representations of data
on which the classifier is hard to memorize the label noise
under the CE loss. We propose a novel contrastive regu-
larization function to learn such representations over noisy
data where label noise does not dominate the representation
learning. By theoretically investigating the representations
induced by the proposed regularization function, we reveal
that the learned representations keep information related to
true labels and discard information related to corrupted la-
bels. Moreover, our theoretical results also indicate that the
learned representations are robust to the label noise. The ef-
fectiveness of this method is demonstrated with experiments
on benchmark datasets.

1. Introduction

The successes of deep neural networks [19, 34] largely
rely on availability of correctly labeled large-scale datasets
that are prohibitively expensive and time-consuming to col-
lect [46]. Approaches to addressing this issue includes: ac-
quiring labels from crowdsourcing-like platforms or non-
expert labelers or other unreliable sources [49,55] but while
theses methods can reduce the labeling cost, label noise is
inevitable. Due to the over-parameterization of deep net-
works [19], examples with noisy labels can ultimately be
memorized with a cross entropy loss [3, 27, 32], which is
known as the memorization effect [30, 53], leading to poor
performance [53]. Therefore, it is important to develop
methods that are robust to the label noise.
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Figure 1. Illustration of the proposed method with noisy la-
bels. Black curves are the best classifiers that are learned dur-
ing training. Left: Deep networks without contrastive regulariza-
tion. Right: Deep networks with contrastive regularization. Two
classes are better separated by deep networks that points with the
same class are pulled into a tight cluster and clusters are pushed
away from each other.

Cross entropy (CE) loss is widely used as a loss function
for image classification tasks due to its strong performance
on clean training data [37] but it is not robust to label noise.
When labels in training data are corrupted, the performance
drops [4, 5]. Given the memorization effect of deep net-
works, training on noisy data with the CE loss results in the
representations of the data clustered in terms of their noisy
labels instead of the ground truth. Thus, the final layer of the
deep networks cannot find a good decision boundary from
these noisy representations.

To overcome the memorization effect, noise-robust loss
functions have been actively studied in the literature [12,31,
42, 55]. They aim to design noise-robust loss functions in
a way such that they achieve small loss on clean data and
large loss on wrongly labeled data. However, it has been
empirically shown that being robust alone is not sufficient
for a good performance as it also suffers from the underfit-
ting problem [29]. To address this issue, these noise-robust
loss functions have to be explicitly or implicitly jointly used



with the CE loss, which brings a trade-off between non-
robust loss and robust loss. As a result, the memorization
effect is alleviated but still remains due to the non-robust
CE loss.

In this paper, we tackle this problem from a different per-
spective. Specifically, we investigate contrastive learning
and the effect of the clustering structure for learning with
noisy labels. Owing to the power of contrastive representa-
tion learning methods [7–9,16,20], learning contrastive rep-
resentations has been extensively applied on various tasks
[21, 28, 48]. The key component of contrastive learning is
positive contrastive pair (x1, x2). Training a contrastive
objective encourages the representations of x1, x2 to be
closer. In supervised classification tasks, correct positive
contrastive pairs are formed by examples from the same
class. When label noise exists, defining contrastive pairs
in terms of their noisy labels results in adverse effects. En-
couraging representations from different classes to be closer
makes it even more difficult to separate images of different
classes. Similar to our attempt to learn contrastive repre-
sentations from noisy data, previous work has focused on
reducing the adverse effects by re-defining contrastive pairs
according to their pseudo labels [10, 14, 24, 25]. However,
pseudo labels can be unreliable, and then wrong contrastive
pairs are inevitable and can dominate the representation
learning.

To address this issue, we propose a new contrastive reg-
ularization function that does not suffer from the adverse
effects. We theoretically investigate benefits of represen-
tations induced by the proposed contrastive regularization
function from two aspects. First, the representations of
images keep information related to true labels and dis-
card information related to corrupted labels. Second, we
theoretically show that the classifier is hard to memorize
corrupted labels given the learned representations, which
demonstrates that our representations are robust to label
noise. Intuitively, learning such contrastive representations
of data helps combat the label noise. If data points are clus-
tered tightly in terms of their true labels, then it makes the
classifier hard to draw a decision boundary to separate the
data in terms of their corrupted labels. We illustrate this
intuition in Figure 1. Our main contributions are as follows.

• We theoretically analyze the representations induced
by the contrastive regularization function, showing that
the representations keep information related to true la-
bels and discard information related to corrupted la-
bels. Moreover, we formally show that representa-
tions with insufficient corrupted label-related informa-
tion are robust to label noise.

• We propose a novel algorithm over data with noisy la-
bels to learn contrastive representations, and provide
gradient analysis to show that correct contrastive pairs

can dominate the representation learning.

• We empirically show that our method can be applied
with existing label correction techniques and noise-
robust loss functions to further boost the performance.
We conduct extensive experiments to demonstrate the
efficacy of our method.

2. Theoretical Analysis
In this section, we first introduce some notations and we

then investigate the benefits of representations learned by
the contrastive regularization function.

2.1. Preliminaries

We use uppercases X,Y, . . . to represent random vari-
ables, calligraphic letters X ,Y, . . . to represent sample
spaces, and lowercases x, y, . . . to represent their realiza-
tions. Let X be input random variable and Y be its true
label. We use Ỹ to denote the wrongly-labeled random vari-
able that is not equal to Y . The entropy of the random vari-
able Y is denoted by H(Y ) and the mutual information of
X and Y is I(X,Y ).

Contrastive learning aims to learn representations of data
that only the data from the same class have similar repre-
sentations. In this paper, we propose to learn the represen-
tations by introducing the following contrastive regulariza-
tion function over all examples {(xi, yi)} from X × Y and
yi is the ground truth.

Lctr(xi, xj) = −
(
⟨ q̃i, z̃j⟩+ ⟨ q̃j , z̃i⟩

)
1{yi = yj}, (1)

where q̃k = qk
∥qk∥2

and z̃k = zk
∥zk∥2

. Following SimSiam [9],
we define q = h(f(x)), z = stopgrad(f(x)), f is an en-
coder network consisting of a backbone network and a pro-
jection MLP, and h is a prediction MLP. Minimizing Eq. (1)
on {(xi, yi), (xj , yj)} pulls representations of xi and xj

closer if yi = yj . The designs of the stop-gradient oper-
ation and h applied on representations are mainly to avoid
trivial constant solutions.

2.2. The Benefits of Representations Induced by
Contrastive Regularization

We first relate the solutions that minimize
Eq. (1) to a mutual information I(Z;X+) =∫∫

p(z, x+) log p(z|x+)
p(z) dx+ dz, where z = f(x) and

x+ is from the same class as x.

Theorem 1. Representations Z learned by minimizing
Eq. (1) maximizes the mutual information I(Z;X+).

Theorem 1 reveals the equivalence between the con-
trastive learning and mutual information maximization. In-
tuitively, Eq. (1) encourages to pull representations from the
same class together and push those from different classes



apart. The estimate of z conditioned on x+ is more accu-
rate than random guessing because the representation z of
x is similar to the representation of x+. Thus the point-
wise mutual information log p(z|x+)

p(z) increases by minimiz-
ing Eq. (1).

We denote Z⋆ = argmaxZθ
I(Zθ, X

+) by the represen-
tation that maximizes the mutual information, where Zθ is a
representation of X parameterized by the neural network f
with parameters θ. To understand what Z⋆ is learned from
inputs and to show that Z⋆ is noise-robust, we introduce the
notion of (ϵ, γ)-distribution:

Definition 1 ((ϵ, γ)-distribution). A distribution
D(X,Y, Ỹ ) is called (ϵ, γ)-Distribution if there exists
γ ≫ ϵ > 0 such that

I(X;Y |X+) ≤ ϵ, (2)

and
I(X; Ỹ |X+) > γ. (3)

Eq. (2) characterizes the connection between images and
their true labels. If we already know an image X+, then
there is the limited extra information related to the true label
by additionally knowing X . We use a small number ϵ to re-
strict this additional information gain. Eq. (3) characterizes
the connection between those images and their corrupted la-
bels. By knowing an additional image X+, the information
X contains about its corrupted label Ỹ is still larger than γ.
The above condition γ ≫ ϵ > 0 states that images from the
same class are much more similar with respect to the true
label than the corrupted label. As it is mentioned in [38], if
there is a perfect prediction of Y given X+, then ϵ = 0.

We illustrate the intuitions behind Definition 1 in Fig-
ure 2. We use the Grad-CAM [35] to highlight the impor-
tant regions in the images for predictions. The highlighted
regions captured by the model are most related to labels.
For images with the same clean labels, their information re-
lated to true labels are similar. For example, when Cat 1 and
Cat 2 in Figure 2 are labeled as “cat”, cat faces are captured
as the true label-related information and they all look alike.
For images with corrupted labels, their information related
to corrupted labels are quite different. When Cat 1 and Cat
2 in Figure 2 are labeled as “dog”, the windows bars cap-
tured as the corrupted label-related information for Cat 1 is
different from the floor and wall for Cat 2.

With the notion of (ϵ, γ)-distribution, the following the-
orem help us understand the benefits of representations Z⋆

in depth.

Theorem 2. Given a distribution D(X,Y, Ỹ ) that is (ϵ, γ)-
Distribution, we have

I(X;Y )− ϵ ≤ I(Z⋆;Y ) ≤ I(X;Y ), (4)

I(Z⋆; Ỹ ) ≤ I(X; Ỹ )− γ + ϵ. (5)

Cat 1 Cat 2 Dog 1 Dog 2

Original

Noisy
Labels

Clean
Labels

Figure 2. An example of Grad-CAM [35] results of Resnet34
trained on noisy dataset with 40% symmetric label noise and clean
dataset, separately. When there is label noise, information related
to corrupted labels captured by the model varies from image to im-
age (e.g. window bars in Cat 1 v.s. floor and wall in Cat 2). When
there is no label noise, information related to true labels are similar
for images from the same class (e.g. cat face in Cat 1 v.s. cat face
in Cat 2).

Given images X and their labels Y , the mutual informa-
tion I(X;Y ) is fixed. The theorem states that the learned
representations Z⋆ keep as much true label-related informa-
tion as possible and discard much corrupted label-related
information. Since the corrupted label-related information
is discarded from the representations Z⋆, memorizing the
corrupted labels based on Z⋆ is diminished. Lemma 1 es-
tablishes the lower bound on the expected error on wrongly-
labeled data.

Lemma 1. Consider a pair of random variables (X, Ỹ ).
Let Ŷ be outputs of any classifier based on inputs Zθ, and
ẽ = 1{Ŷ ̸= Ỹ }, where 1{A} be the indicator function of
event A. Then, we have

E[ẽ] ≥ H(Ỹ )− I(Zθ; Ỹ )−H(ẽ)

log
(
|Ỹ|

)
− 1

.

Lemma 1 provides a necessary condition on the success
of learning with noisy labels based on representation learn-
ing and sheds new light on this problem by highlighting the
role of minimizing I(Zθ; Ỹ ). To see this, note that small
I(Zθ; Ỹ ) implies robustness to label noise since E[ẽ] is the
expected error over the corrupted labels. On the other hand,
when minimizing Eq. (1), small I(Z⋆; Ỹ ) can be achieved
as indicated by the upper bound in Eq. (12). In the mean-
while, the lower bound on I(Z⋆;Y ) in Eq. (11) also shows
that Z⋆ can retain the discriminative information of the data
to avoid a trivial solution to I(Zθ; Ỹ ) minimization (i.e., Zθ

is a constant representation).
While Lemma 1 combined with Theorem 2 indicates that

Z⋆ is robust to label noise, the following Lemma shows that
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Figure 3. Results of memorization of label noise and performance on test data on CIFAR-10 with 80% symmetric label noise (SYM) and
40% asymmetric label noise (ASYM). The memorization is defined by the fraction of wrongly labeled examples whose predictions are
equal to their labels.

Z⋆ can also avoid underfitting. Specifically, it implies that
that a good classifier achieved under the clean distribution
can also be achieved based on our representations Z⋆.

Lemma 2. Let R(X) = infg EX,Y [L(g(X), Y )] be the
minimum risk over the joint distribution X × Y , where
L(p, y) =

∑Y
i=1 y

(i) log p(i) is a CE loss and g is a func-
tion mapping from input space to label space. Let R(Z⋆) =
infg′ EZ⋆,Y [L(g′(Z⋆), Y )] be the minimum risk over the
joint distribution Z⋆ × Y and g′ maps from representation
space to label space. Then,

R(Z⋆) ≤ R(X) + ϵ.

To show the robustness and performance of the con-
trastive (CTR) representation Z⋆, we empirically compare
it to the representation learned by the CE loss. We first
use clean labels to train neural networks with different loss
functions. Then we initialize the parameters of the final lin-
ear classifier and fine-tune the linear layer with noisy labels.
We denote the memorization by the fraction of corrupted
examples whose predictions are equal to their labels. Fig-
ure 3 illustrates the improved performance and robustness
in terms of test accuracy and reduced memorization with
the CTR representation.

Conventionally, the memorization of label noise in-
creases as the training progresses [27, 44]. We remark
that previous memorization is observed and proved in over-
parameterized models, where the ratio of the number pa-
rameters and the sample size is around 220. In their set-
tings, the fraction of examples memorized by the model will
increase. However, the memorization in our setting is mea-
sured on a linear classifier on top of frozen data represen-
tations, where the ratio of the number parameters and the
sample size is around 0.1, which is under-parameterized.
This explains why Figure 3 shows that the memorization
decreases as the training progresses.

3. Algorithm
In practice, as we are only given a noisy data set, we do

not know if a label is clean or not. Consequently, simply
minimizing Eq. (1) can lead to deteriorated performances.
To see this, note that Eq. (1) is activated only when 1{yi =
yj} = 1. Thus, two representations from different classes
will be pulled together when there are noisy labels.

Since deep networks first fit examples with clean labels
and the probabilistic outputs of these examples are higher
than examples with corrupted labels [3,26], one straightfor-
ward approach to tackle this issue is to replace the indicator
function with a more reliable criterion 1{p⊤i pj ≥ τ}:

L′
ctr(xi, xj) = −

(
⟨ q̃i, z̃j⟩+ ⟨ q̃j , z̃i⟩

)
1{p⊤i pj ≥ τ}, (6)

where pi is the probabilistic output produced by linear clas-
sifier on the representation of image xi and τ is a confi-
dence threshold. However, minimizing Eq. (6) only helps
representation learning during the early stage. After that
period, examples with corrupted labels will dominate the
learning procedure since the magnitudes of gradient from
correct contrastive pairs overwhelm that from wrong con-
trastive pairs. In particular, given two clean examples xi, xj

with yi = yj and a wrongly labeled example xm with
ỹm = yi = yj , during the early stage, representations
q̃⊤i q̃j → 1 and q̃⊤i q̃m ≈ 0. After the early stage, deep net-
works starts to fit wrongly labeled data. At this moment, the
wrong contrastive pairs (xi, xm) and (xj , xm) are wrongly
pulled together and they impair the representation learning
instead of the correct pair (xi, xj):∥∥∥∥∂L′

ctr(xi, xm)

∂qi

∥∥∥∥2
2

= ci(1− q̃⊤i q̃m︸ ︷︷ ︸
≈1

) (7)

≫ ci(1− q̃⊤i q̃j︸ ︷︷ ︸
≈0

) =

∥∥∥∥∂L′
ctr(xi, xj)

∂qi

∥∥∥∥2
2

,

where ci = 1/∥qi∥22 and we take h as an identity function



for simplicity. The proof is shown in supplementary mate-
rials.

To address this issue, we propose the following regular-
ization function to avoid the negative effects from wrong
contrastive pairs:

L̃ctr(xi, xj) =(
log

(
1− ⟨ q̃i, z̃j⟩

)
+ log

(
1− ⟨ q̃j , z̃i⟩

))
1{p⊤i pj ≥ τ}

(8)
Eq. (8) still aims to learn similar representations for data
with the same true labels. Since the maximum of Eq. (8)
is the same as that of Eq. (1), our theoretical results about
Z⋆ still hold. Moreover, the gradient analysis of Eq. (8) is
given by ∥∥∥∥∥∂L̃ctr(xi, xj)

∂qi

∥∥∥∥∥
2

2

= ci(1 + q̃⊤i q̃j), (9)

which indicates that the gradient in L2 norm increases if q̃i
and q̃j approach to each other. In other words, the gradi-
ent from the correct pair (xi, xj) is larger than the gradient
from the wrong pair (xi, xm) (1 + q̃⊤i q̃j > 1 + q̃⊤i q̃m ≈ 1)
during the learning procedure. Compared to the gradient
given by Eq. (7), our proposed regularization function does
not suffer from the gradient domination by wrong pairs.
Meanwhile, the model does not overfit clean examples even
though the gradients of Eq. (8) from correct pairs are larger
than wrong pairs. As Eq. (7) describes the gradient with re-
spect to the representation, its magnitude can be viewed as
the strength of pulling clean examples from the same class
closer, which is not directly related to overfitting to clean
examples. Moreover, we use a separate linear layer on top
of the representations as the classifier, thus as long as the
gradients of the classification loss with respect to the param-
eters in the linear layer are not large on the clean examples,
the model would not overfit to them.

Finally, the overall objective function is given by

L = Lce + λL̃ctr, (10)

where L̃ctr serves as a contrastive regularization (CTRR) on
representations and λ controls the strength of the regular-
ization.

4. Experiments
Datasets. We evaluate our method on two artificially

corrupted datasets CIFAR-10 [15] and CIFAR-100 [15],
and two real-world datasets ANIMAL-10N [36] and Cloth-
ing1M [47]. CIFAR-10 and CIFAR1-00 contain 50, 000
training images and 10, 000 test images with 10 and 100
classes, respectively. ANIMAL-10N has 10 animal classes
and 50, 000 training images with confusing appearances

and 5000 test images. Its estimated noise level is around
8%. Clothing1M has a million training images and 10, 000
test images with 14 classes. Its estimated noise level is
around 40%.

Noise Generation. For CIFAR-10, we consider
two different types of synthetic noise with various
noise levels. For symmetric noise, each label has the
same probability of flipping to any other classes, and
we randomly choose r training data with their labels
to be flipped for r ∈ {20%, 40%, 60%, 80%, 90%}.
For asymmetric noise, following [6], we flip labels
between TRUCK→AUTOMOBILE, BIRD→AIRPLANE,
DEER→HORSE, and CAT↔DOG. we randomly choose
40% training data with their labels to be flipped accord-
ing to the asymmetric labeling rule. For CIFAR-100, we
also consider two different types of synthetic noise with
various noise levels. The generation for symmetric label
noise is the same as that for CIFAR-10 with the noise level
r ∈ {20%, 40%, 60%, 80%}. To generate asymmetric label
noise, we randomly sample 40% data and flip their labels to
the next classes.

Baseline methods. To evaluate our method, we mainly
compare our robust loss function to other robust loss func-
tion methods: 1) CE loss. 2) Forward correction [33], which
corrects loss values by a estimated noise transition matrix.
3) GCE [55], which takes advantages of both MAE loss and
CE loss and designs a robust loss function. 4) Co-teaching
[17], which maintains two networks and uses small-loss ex-
amples to update. 5) LIMIT [18], which introduces noise to
gradients to avoid memorization. 6) SLN [6], which adds
Gaussian noise to noisy labels to combat label noise. 7)
SL [42], which uses CE loss and a reverse cross entropy loss
(RCE) as a robust loss function. 8) APL (NCE+RCE) [29],
which combines two mutually boosted robust loss functions
for training.

Implementation details. We use a PreAct Resnet18
as the encoder for CIFAR datasets, and Resnet18 as the en-
coder for the two real-world datasets. The project MLP and
the prediction MLP are the same for all encoders. Following
SimSiam [9], the projection MLP consists of 3 layers which
have 2048 hidden dimensions and output 2048-dimensional
embeddings. The prediction MLP consists of 2 layers which
have 512 hidden dimensions and output 2048-dimensional
embeddings. Following [7], we apply strong augmentations
to learn data representations, where the strong augmenta-
tion includes Gaussian blur, color distortion, random flip-
ping and random cropping. We use weak augmentations
to optimize the cross-entropy loss, which includes random
flipping and random cropping. More implementation details
can be found in supplementary materials.



Method
CIFAR-10

Sym. Asym.
0% 20% 40% 60% 80% 90% 40%

CE 93.97±0.22 88.51±0.17 82.73±0.16 76.26±0.29 59.25±1.01 39.43±1.17 83.23±0.59

Forward 93.47±0.19 88.87±0.21 83.28±0.37 75.15±0.73 58.58±1.05 38.49±1.02 82.93±0.74

GCE 92.38±0.32 91.22±0.25 89.26±0.34 85.76±0.58 70.57±0.83 31.25±1.04 82.23±0.61

Co-teaching 93.37±0.12 92.05±0.15 87.73±0.17 85.10±0.49 44.16±0.71 30.39±1.08 77.78±0.59

LIMIT 93.47±0.56 89.63±0.42 85.39±0.63 78.05±0.85 58.71±0.83 40.46±0.97 83.56±0.70

SLN 93.21±0.21 88.77±0.23 87.03±0.70 80.57±0.50 63.99±0.79 36.64±1.77 81.02±0.25

SL 94.21±0.13 92.45±0.08 89.22±0.08 84.63±0.21 72.59±0.23 51.13±0.27 83.58±0.60

APL 93.97±0.25 92.51±0.39 89.34±0.33 85.01±0.17 70.52±2.36 49.38±2.86 84.06±0.20

CTRR 94.29±0.21 93.05±0.32 92.16±0.31 87.34±0.84 83.66±0.52 81.65±2.46 89.00±0.56

Table 1. Test accuracy on CIFAR-10 with different noise types and noise levels. All method use the same model PreAct Resnet18 [19] and
their best results are reported over three runs.

Method
CIFAR-100

Sym. Asym.
0% 20% 40% 60% 80%

CE 73.21±0.14 60.57±0.53 52.48±0.34 43.20±0.21 22.96±0.84 44.45±0.37

Forward 73.01±0.33 58.72±0.54 50.10±0.84 39.35±0.82 17.15±1.81 -
GCE 72.27±0.27 68.31±0.34 62.25±0.48 53.86±0.95 19.31±1.14 46.50±0.71

Co-teaching 73.39±0.27 65.71±0.20 57.64±0.71 31.59±0.88 15.28±1.94 -
LIMIT 65.53±0.91 58.02±1.93 49.71±1.81 37.05±1.39 20.01±0.11 -
SLN 63.13±0.21 55.35±1.26 51.39±0.48 35.53±0.58 11.96±2.03 -
SL 72.44±0.44 66.46±0.26 61.44±0.23 54.17±1.32 34.22±1.06 46.12±0.47

APL 73.88±0.99 68.09±0.15 63.46±0.17 53.63±0.45 20.00±2.02 52.80±0.52

CTRR 74.36±0.41 70.09±0.45 65.32±0.20 54.20±0.34 43.69±0.28 54.47±0.37

Table 2. Test accuracy on CIFAR-100 with different noise levels. All method use the same model PreAct Resnet18 [19] and their best
results are reported over three runs.

Method ANIMAL-10N Clothing1M
CE 83.18±0.15 70.88±0.45

Forward 83.67±0.31 71.23±0.39

GCE 84.42±0.39 71.34±0.12

Co-teaching 85.73±0.27 71.68±0.21

SLN 83.17±0.08 71.17±0.12

SL 83.92±0.28 72.03±0.13

APL 84.25±0.11 72.18±0.21

CTRR 86.71±0.15 72.71±0.19

Table 3. Test accuracy on the real-world datasets ANIMAL-10N
and Clothing1M. The results are obtained based on three different
runs.

4.1. CIFAR Results

Table 1 and Table 2 show the results on CIFAR-10
and CIFAR-100 with various label noise settings. We use
PreAct Resnet18 [19] for all methods and report the best

test accuracy for them based on three runs. Our method
achieves the best performance on all tested noise settings.
The improvement is more substantial when the noise level
is higher. Especially when noise levels reach to 80% or even
90%, our method significantly outperforms other methods.
For example, on CIFAR-10 with r = 90%, CTRR main-
tains a high accuracy of 81.65%, whereas the second best
one is 49.65%.

4.2. ANIMAL-10N & Clothing1M Results

Table 3 shows the results on the real-world datasets
ANIMAL-10N and Clothing1M. All methods use the same
model and the best results are reported over three runs. In
order to be consistent with previous works for a fair com-
parison, we use a random initialized Resnet18 and an Im-
ageNet pre-trained Resnet18 on ANIMAL-10N and Cloth-
ing1M, respectively, and the best results are reported over
three runs. For Clothing1M, following [6,23], we randomly
sample a balanced subset of 20.48K images from the noisy



Regularization Functions CIFAR-10
0% 20% 40% 60% 80% 90%

L′
ctr(6) 93.58±0.11 86.05±0.33 82.34±0.25 74.35±0.54 54.83±1.00 40.96±0.99

L̃ctr(8) 94.29±0.21 93.05±0.32 92.16±0.31 87.34±0.84 83.66±0.52 81.65±2.46

Table 4. The performance of the model with respect to different regularization functions.

Contrastive Frameworks CIFAR-10
20% 40% 60% 80% 90%

CTRR (SimSiam) 93.05±0.32 92.16±0.31 87.34±0.84 83.66±0.52 81.65±2.46

CTRR (SimCLR) 92.50±0.35 90.12±0.43 87.41±0.83 84.96±0.44 79.57±1.32

CTRR (BYOL) 93.31±0.16 92.12±0.16 88.71±0.52 86.99±0.59 84.31±0.66

Table 5. Extending our method to other contrasitve learning frameworks.

Figure 4. Analysis of λ and τ on CIFAR-10 with 60% symmetric
label noise.

training data and report performance on 10K test images.
Our method is superior to other baselines on the two real-
world datasets.

5. Ablation Studies and Discussions

5.1. Effects of hyperparameters

The hyperparameter λ controls the strength of the regu-
larization to representations of data. A weak regularization
is not able to address the memorization issue, while a strong
regularization makes the neural network mainly focus on
optimizing the regularization term and ignoring optimizing
the linear classifier. Figure 4 (left) shows the test accuracy
with different λ. The results are in line with the expectation
that too strong or too weak regularizations leads to poor per-
formance.

The τ is the confidence threshold for choosing two ex-
amples from the same classes. When the score for the two
examples exceeds the threshold, the two examples are con-
sidered as the correct pair. Many wrong pairs are selected
if τ is set too low. Figure 4 (right) shows the test accuracy
with different τ . When we are always confident about any
pairs (τ=0), the model performance is reduced significantly
(∼ 20%).

5.2. Effects of regularization functions

To study the effect of the proposed regularization func-
tion, we compare the performance of Eq. (8) to Eq. (6).
Empirical results are consistent with the previous gradient
analysis and they are shown in Table 4. Our proposed reg-
ularization function Eq. (8) outperforms Eq. (6) by a large
margin across all noise levels. Thus, learning data represen-
tations with Eq. (8) can avoid wrong pairs dominating the
representation learning.

5.3. Other contrasitve learning frameworks

Since the InfoMax principle [40] of contrastive learn-
ing and the gradient analysis can apply to other contrastive
learning frameworks, we apply CTRR to other contrastive
learning frameworks. Table 5 shows that our principle is not
limited to the SimSiam framework but can also be applied
on other contrastive learning frameworks. Since BYOL
leverages an additional exponential moving average model
to learn representations, the performance of CTRR with
BYOL performs better, compared with SimSiam. CTRR
works slightly worse under SimCLR than the other two
frameworks. For its implementation, we simply replace the
inner product of positive representations in SimCLR with
our regularization function Eq. (8) and keep the SimCLR
objective function from negative pairs the same. A study
on how negative pairs from SimCLR affects representation
learning in presence of the label noise is beyond the scope
of this paper.

5.4. Combination with other methods

Furthermore, CTRR is orthogonal to label correction
techniques [27, 54]. In other words, our method can be
integrated with these techniques to further boost learning
performances. Specifically, we use the basic label cor-
rection strategy following [6] that labels are replaced by
weighted averaged of both model predictions and original



Label Correction CIFAR-10
Technique 20% 40% 60% 80%

✗ 93.05±0.32 92.16±0.31 87.34±0.84 83.66±0.52

✓ 93.32±0.11 92.76±0.67 89.23±0.18 85.40±0.93

Table 6. ✓/✗ indicates the label correction technique is en-
abled/disabled.

Method CIFAR-10
20% 40% 60% 80%

GCE 91.22±0.25 89.26±0.34 85.76±0.58 70.57±0.83

CTRR 93.05±0.32 92.16±0.31 87.34±0.84 83.66±0.52

CTRR+GCE 93.94±0.09 93.06±0.29 92.79±0.06 90.25±0.40

Table 7. The performance of the model with respect to GCE,
CTRR and CTRR+GCE.

labels, where weights are scaled sample losses. In Table 6,
we show that the performance is improved after enabling a
simple label correction technique.

Note that GCE [55] is a partial noise-robust loss func-
tion implicitly combined with CE and MAE. It is of interest
to re-validate the loss function GCE along with our pro-
posed regularization function. We show the performance of
a combination of our method and GCE [55] in Table 7. With
representations induced by our proposed method, there is a
significant improvement on GCE, which demonstrates the
effectiveness of the learned representations. Meanwhile,
the success of this combination implies that our proposed
method is beneficial to other partial noise-robust loss func-
tions.

6. Related Work
In this section, we briefly review existing approaches for

learning with label noise.
Noise-robust loss functions are designed to achieve a

small error on clean data instead of corrupted data while
training on the noisy training data [1, 29, 37]. Mean abso-
lute error (MAE) is robust to label noise [13] but it is not
able to solve complicated classification tasks. The deter-
minant based mutual information loss LDMI is proved to be
robust to label noise [49] but it only works on the instance-
independent label noise. The generalized cross entropy
(GCE) [55] takes advantages of MAE and implicitly com-
bined it with CE. The symmetric cross entropy (SL) [42]
designs a noise-robust reverse cross entropy loss and ex-
plicitly combines it with CE. However, they have not com-
pletely addressed the issue as CE is prone to memorizing
corrupted labels. The LIMIT [18] proposes to add noise to
gradients to address the memorization issue. SLN [6] pro-
poses to combat label noise by adding noise to labels of
data. However, they may suffer from underfitting problems.

There are many different contrasitve regularization func-
tions and architectures proposed to learn representations
such as SimCLR [7], MoCo [8], BYOL [16], SimSiam [9]

and SupCon [20], where SupCon is to learn supervised rep-
resentations with clean labels while others focus on learning
self-supervised representations without labels. We aim to
learn representations with noisy labels. We mainly follow
the SimSiam framework, but our method is not limited to
the SimSiam framework. Recently, some methods existing
methods [10, 14, 24, 25] leverage contrasitve representation
learning to address noisy label problems. Compared to their
methods, we theoretically analyze the benefits of learning
such contrastive representations and we focus on address-
ing a fundamental issue of how to avoid wrong contrastive
pairs dominating the representation learning.

There are many other methods for learning with noisy
labels. Sample selection methods such as Co-teaching [17],
Co-teaching+ [52], SELFIE [36], and JoCoR [43] are se-
lecting small loss examples to update models where they
treat small loss examples as clean ones. Loss correction
methods such as Forward/Backward method [33] modify
the sample loss based on a noise transition matrix. Some
works propose to improve the estimation of the noise transi-
tion matrix such as T-Revision [45] and Dual T [50]. Label
correction methods such as ELR [27], M-DYR-H [2] and
PENCIL [51] replace noisy labels with pseudo-labels using
different strategies. Methods like DivideMix [23] combine
the sample selection, label correction and semi-supervised
techniques and empirically demonstrate their success to
combat noisy labels.

7. Conclusion

We present a simple but effective CTRR to address the
memorization issue. Our theoretical analysis indicates that
CTRR induces noise-robust representations without suffer-
ing from the underfitting problem. From algorithmic per-
spectives, we propose a novel regularization function to
avoid adverse effects from wrong pairs. The empirical re-
sults also demonstrate the effectiveness of CTRR. On the
one hand, we show the potential combinations of existing
methods to improve the model performance. On the other
hand, we evaluate our method under different contrastive
learning frameworks. Both of them reveal the flexibility
of our method and the importance of correctly regularizing
data representations. We believe that CTRR can be jointly
used with other existing methods to better solve machine
learning tasks where there exists label noise.
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Appendix

A. Experiment Details
A.1. Implementation Details

For CIFAR datasets, we use the model PreAct Resnet18
[19]. For ANIMAL-10N, we use a random initialized model
Resnet18 [19]. For Clothing1M, we use an ImageNet pre-
trained model Resnet18 [19]. We illustrate our framework
in Figure 5. The projection MLP is 3-layer MLP and
the prediction MLP is 2-layer MLP as proposed in Sim-
siam [9]. We use weak augmentations Aw : X → X
including random resized crop and random horizontal flip
for optimizing the cross entropy loss Lce. Following Sim-
Siam [9] [7], we use a strong augmentation As : X → X
applied on images twice for optimizing the contrastive regu-
larization term L̃ctr. Specifically, {zi} = f

(
As({xi})

)
and

{qi} = h
(
f
(
As({xi}

))
for every example xi, where one

strong augmented image is for calculating z and another is
for calculating q.

A.2. Algorithm

According to our gradient analysis on two different clean
images xi, xj with yi = yj and a noisy image xm with
ym = yi, apply the regularization function Eq. (8) can avoid
representation learning dominated by the wrong contrastive
pair (xi, xm). The analysis does not cover the same im-
age with two different augmentations. When applying the
strong augmentation twice, each image x has two different
augmentations x′, x′′. The contrastive pair (x′, x′′) will also
dominate the representation learning given the property of
Eq. (8). However, focusing on learning similar represen-
tations of (x′, x′′) does not help to form a cluster struc-
ture in representation space. As mentioned in [41], learn-
ing this self-supervised representations causes representa-
tions of data distributed uniformly on the unit hypersphere.
Hence, we want the gradient from the pair (x′, x′′) to be
smaller when their representations approach to each other.
We use the original contrastive regularization to regularize
the pair (x′, x′′). The pseudocode of the proposed method
is given in Algorithm 1.

A.3. Hyperparameters

CIFAR. Our method has two hyperparameters λ and τ .
For each noise setting for CIFAR-10, we select the best hy-
perparameters: λ from {50, 130} and τ from {0.4, 0.8}.
For each noise setting for CIFAR-100, we select the best
hyperparameters: λ from {50, 90} and τ from {0.05, 0.7}.
The batch size is set as 256, and the learning rate is 0.02
using SGD with a momentum of 0.9 and a weight dacay of
0.0005.

ANIMAL-10N & Clothing1M. For ANIMAL-10N, we
set λ = 50, τ = 0.8 and batch size is 256. The learning rate
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Figure 5. Illustration of our framework.

is set as 0.04 with the same SGD optimizer as the CIFAR
experiment. For Clothing1M, we set λ = 90, τ = 0.4 and
batch size is 256. The learning rate is set as 0.06 with the
same SGD optimizer as above.

B. Proofs of Theoretical Results
B.1. Proof for Theorem 1

Theorem. Representations Z learned by minimizing
Eq. (1) maximizes the mutual information I(Z;X+).

Proof. We first decompose the mutual information
I(Z;X+):

I(Z;X+) =EZ,X+ log
p(Z|X+)

p(Z)

=EX+EZ|X+ [log p(Z|X+)]− EZ,X+ [p(Z)]

=− EX+

[
H(Z|X+)

]
+H(Z).

The first term EX+

[
H(Z|X+)

]
measures the uncertainty

of Z|X+, which is minimized when Z can be completely
determined by X+. The second term H(Z) measures the
uncertainty of Z itself and it is minimized when outcomes
of Z are equally likely.

We next show that Z can be completely determined by
X+ when minimum of Eq. (1) is achieved and uncertainty
of Z itself is maintained by an assumption about the frame-
work. By the Cauchy-Schwarz inequality,

EX,X+

[
Lctr(X,X+)

]
≥EX,X+

[
∥q̃∥2

∥∥z̃+∥∥
2

+
∥∥q̃+∥∥

2
∥z̃∥2] = −2.

The equality is attained when q̃ = z̃+ and q̃+ = z̃ for all
x, x+ from the same class. For any three images x1, x2, x3

from the same class, we have:

f(x1) = g(x3), f(x2) = g(x3),

where g = h(f(·)). We can find f(x1) = f(x2) for
any images x1, x2 from the same class. The result can



Algorithm 1: CTRR Pseudocode in a PyTorch-like style

# Training
# f: backbone + projection mlp
# h: prediction mlp
# g: backbone + softmax linear classifier

for x, y in loader:
bsz = x.size(0)
x1, x2 = strong_aug(x), strong_aug(x) # strong random augmentation
x3 = weak_aug(x) # weak random augmentation
z1, z2 = f(x1), f(x2)
q1, q2 = h(z1), h(z2)
p = g(x3)

# compute representations
c1 = torch.matmul(q1, z2.t()) # B X B
c2 = torch.matmul(q2, z1.t()) # B X B

# compute contrastive loss for each pair
m1 = torch.zeros(bsz, bsz).fill_diagonal_(1) # identity matrix
m2 = torch.ones(bsz, bsz).fill_diagonal_(0) # 1-identity matrix
# - <i,i> + log(1-<i,j>)
c1 = -c1*m1 + ((1-c1).log()) * m2
c2 = -c2*m1 + ((1-c2).log()) * m2
c = torch.cat([c1, c2], dim=0) # 2B X B

# compute probability threshold
probs_thred = torch.matmul(p, p.t()).fill_diagonal_(1).detach() # B X B
mask = (probs_thred >= tau).float()
probs_thred = probs_thred * mask
# normalize the threshold
weight = probs_thred / probs_thred.sum(1, keepdim=True)
weight = weight.repeat((2, 1)) # 2B X B

loss_ctr = (contrast_logits * weight).sum(dim=1).mean(0)

be easily extended to the general case: f(X1) = f(X2)
for any (X1, Y1) ∼ P (X,Y ), (X2, Y2) ∼ P (X,Y ) with
Y1 = Y2. Thus Z can be determined by X+ with the equa-
tion Z = f(X+), which minimizes EX+

[
H(Z|X+)

]
.

When p(Z = cy|Y = y) = 1
|Y| , the entropy H(Z)

is maximized. With extensive empirical results in Sim-
siam [9], we assume the collapsed solutions are perfectly
avoided by using the SimSiam framework. By this assump-
tion, cj ̸= ck for any j ̸= k. The model learns different
clusters cy for different y and representations with differ-
ent labels have different clusters. Therefore, for a balanced
dataset, the outcomes of Z are equally likely and it maxi-
mizes the second term H(Z). In summary, the learned rep-
resentations by Eq. (1) maximizes the mutual information
I(Z;X+).

B.2. Proof for Theorem 2

Theorem. Given a distribution D(X,Y, Ỹ ) that is (ϵ, γ)-
Distribution, we have

I(X;Y )− ϵ ≤ I(Z⋆;Y ) ≤ I(X;Y ), (11)

I(Z⋆; Ỹ ) ≤ I(X; Ỹ )− γ + ϵ. (12)

Proof. The Theorem builds upon the Theorem 5 from [39].
We first provide the proof for the first inequality, which can
also be obtained from [39]. Then we provide the proof for
the second inequality.

For the first inequality, by adopting Data Process-
ing Inequality in the Markov Chain Y ↔ X →
Z, we have I(X;Y ) ≥ I(Z;Y ) for any Z ∈
Z . Then, we have I(X;Y ) ≥ I(Z⋆;Y ). Since
Z⋆ = argmaxZθ

I(Zθ;X
+), and I(Zθ;X

+) is maxi-
mized at I(X;X+), then I(Z⋆;X+) = I(X;X+) and
I(Z⋆;X+|Y ) = I(X;X+|Y ). Meanwhile, use the result
I(Z⋆;X+;Y ) = I(X;X+;Y ), which is given by

I(Z⋆;X+;Y ) = I(Z⋆;X+)− I(Z⋆;X+|Y )

= I(X;X+)− I(X;X+|Y )

= I(X;X+;Y ),

we have

I(Z⋆;Y ) =I(X;X+;Y ) + I(Z⋆;Y |X+)

=I(X;Y )− I(X;Y |X+) + I(Z⋆;Y |X+).
(13)

Thus, by Eq. (13) and the Definition 1, we get

I(Z⋆;Y ) ≥ I(X;Y )−I(X;Y |X+) ≥ I(X;Y )−ϵ (14)

Now we present the second inequality I(Z⋆; Ỹ ) ≤
I(X; Ỹ )− γ + ϵ.



Similarly, by Eq. (13), we have

I(Z⋆; Ỹ ) = I(X; Ỹ )− I(X; Ỹ |X+) + I(Z⋆; Ỹ |X+)
(15)

≤ I(X; Ỹ )− γ + I(Z⋆; Ỹ |X+) (16)

≤ I(X; Ỹ )− γ + I(Z⋆;Y |X+) (17)

≤ I(X; Ỹ )− γ + ϵ (18)

, where the first and the third inequalities are by the def-
inition 1; the second inequality is by the Data Processing
Inequality in the Markov Chain Ỹ ← Y ↔ X → Z.

B.3. Proof for Lemma 1

Lemma. Consider a pair of random variables (X, Ỹ ). Let
Ŷ be outputs of any classifier based on inputs Zθ, and ẽ =
1{Ŷ ̸= Ỹ }, where 1{A} be the indicator function of event
A. Then, we have

E[ẽ] ≥ H(Ỹ )− I(Zθ; Ỹ )−H(ẽ)

log
(
|Ỹ|

)
− 1

.

Proof. If we are given any two of {ẽ = 1}, Ŷ , Ỹ , the other
one is known. By the properties of conditional entropy,
H(Ỹ , ẽ|Ŷ , Zθ) can be decomposed into the two equivalent
forms.

H(Ỹ , ẽ|Ŷ , Zθ) = H(Ỹ |ẽ, Ŷ , Zθ) +H(ẽ|Ŷ , Zθ)

= H(Ỹ |ẽ, Ŷ , Zθ)︸ ︷︷ ︸
0

+H(Ỹ |Ŷ , Zθ) (19)

The first equality can also be decomposed into another
form:

H(Ỹ , ẽ|Ŷ , Zθ)

=H(Ỹ |ẽ, Ŷ , Zθ) +H(ẽ|Ŷ , Zθ)

=p(ẽ = 1)H(Ỹ |ẽ = 1, Ŷ , Zθ)

+ p(ẽ = 0)H(Ỹ |ẽ = 0, Ŷ , Zθ)︸ ︷︷ ︸
0

+H(ẽ|Ŷ , Zθ)

=p(ẽ = 1)H(Ỹ |ẽ = 1, Ŷ , Zθ) +H(ẽ|Ŷ , Zθ) (20)

Relating Eq. (19) to Eq. (20), we have

E[ẽ] =
H(Ỹ |Ŷ , Zθ)−H(ẽ|Ŷ , Zθ)

H(Ỹ |ẽ = 1, Ŷ , Zθ)

≥ H(Ỹ |Ŷ , Zθ)−H(ẽ|Ŷ , Zθ)

log (|Y| − 1)

≥ H(Ỹ |Ŷ , Zθ)−H(ẽ)

log (|Y| − 1)

=
H(Ỹ )− I(Ỹ ;Zθ, Ŷ )−H(ẽ)

log (|Y| − 1)

=
H(Ỹ )− I(Ỹ ;Zθ)−H(ẽ)

log (|Y| − 1)
.

The first inequality is by H(Ỹ |ẽ = 1, Ŷ , Zθ) ≤
log (|Y| − 1), where Ỹ can take at most |Y|− 1 values. For
the second inequality,

H(ẽ|Ŷ , Zθ) = H(ẽ)− I(ẽ; Ŷ , Zθ)

≤ H(ẽ).

For the last equality,

I(Ỹ ;Zθ, Ŷ ) =H(Zθ, Ŷ )−H(Zθ, Ŷ |Ỹ )

=H(Zθ) +H(Ŷ |Zθ)

−H(Zθ|Ỹ )−H(Ŷ |Zθ, Ỹ )

=I(Zθ, Ỹ ) + I(Ŷ ; Ỹ |Zθ)

=I(Zθ, Ỹ ),

where I(Ŷ ; Ỹ |Zθ) = 0 given the Markov Chain Ỹ ← Y ↔
X → Z → Ŷ :

I(Ŷ ; Ỹ |Zθ) =H(Ŷ |Zθ)−H(Ŷ |Zθ, Ỹ )

= H(Ŷ |Zθ)−H(Ŷ |Zθ) = 0.

B.4. Proof for Lemma 2

Lemma. Let R(X) = infg EX,Y [L(g(X), Y )] be the
minimum risk over the joint distribution X × Y , where
L(p, y) =

∑Y
i=1 y

(i) log p(i) is a CE loss and g is a func-
tion mapping from input space to label space. Let R(Z⋆) =
infg′ EZ⋆,Y [L(g′(Z⋆), Y )] be the minimum risk over the
joint distribution Z⋆ × Y and g′ maps from representation
space to label space. Then,

R(Z⋆) ≤ R(X) + ϵ.

Proof. The lemma is given by the variational
form of the conditional entropy H(Y |Z⋆) =
infg′ EZ⋆,Y [L(g′(Z⋆), Y )] [11, 22]. According to a
property of mutual information,

I(A;B) = H(A)−H(A|B),



we have R(Z⋆) = H(Y ) − I(Z⋆;Y ). By the results of
Theorem 2,

R(Z⋆) ≤H(Y )− I(X;Y ) + ϵ

=H(Y |X) = inf
g
EX,Y [L(g(X), Y )].

C. Gradients of Contrastive regularization
Functions

For the contrastive regularization function

L′
ctr(xi, xj) = −

( qi
∥qi∥2

· zj
∥zj∥2

+
qj
∥qj∥2

· zi
∥zi∥2

)
,

we only consider the case 1{p⊤i pj ≥ τ} = 1 be-
cause L′

ctr(xi, xj) is not calculated in the algorithm when
1{p⊤i pj ≥ τ} = 0. We assume that h is an identity func-
tion and xi, xj are from the same class for simplicity.

Let a = ∥qi∥2, b = qi, x =
zj

∥zj∥2
and c = b

a . According

to the equation a2 = b⊤b, we differentiate both side of the
equation and get

2a da = 2b⊤ db. (21)

In the meanwhile,

∂
(b⊤x

a

)
=

d(b⊤x)a− dab⊤x

a2

(21)
=

ax⊤ db

a2
− b⊤ dbb⊤x

a3

=
x⊤ db

a
− a2c⊤xc⊤ db

a3

=
1

a

(
x⊤ − c⊤xc⊤

)
db.

Taking a, b, c and x back to the equation, we get the result

∂L′
ctr(xi, xj)

∂qi
= − 1

∥qi∥2

( qj
∥qj∥2

− (
q⊤i qj

∥qi∥2∥qj∥2
)

qi
∥qi∥2

)
.

Note that zi = Stopgrad(qi) because of the identity map
h. Let ci = 1/∥qi∥22 and then we have∥∥∥∥∂L′

ctr(xi, xj)

∂qi

∥∥∥∥2
2

= ci(1− (q̃⊤i q̃j)
2).

Similarly, for the contrastive regularization function

L̃ctr(xi, xj) =

(
log

(
1− ⟨ qi

∥qi∥2
,

zj
∥zj∥2

⟩
)

+ log
(
1− ⟨ qj

∥qj∥2
,

zi
∥zi∥2

⟩
))

,

∂L̃ctr(xi, xj)

∂qi
=

1

1− q̃⊤i q̃j

∂L′
ctr(xi, xj)

∂qi

=ci(1 + q̃⊤i q̃j).


	1 . Introduction
	2 . Theoretical Analysis
	2.1 . Preliminaries
	2.2 . The Benefits of Representations Induced by Contrastive Regularization

	3 . Algorithm
	4 . Experiments
	4.1 . CIFAR Results
	4.2 . ANIMAL-10N & Clothing1M Results

	5 . Ablation Studies and Discussions
	5.1 . Effects of hyperparameters
	5.2 . Effects of regularization functions
	5.3 . Other contrasitve learning frameworks
	5.4 . Combination with other methods

	6 . Related Work
	7 . Conclusion
	A . Experiment Details
	A.1 . Implementation Details
	A.2 . Algorithm
	A.3 . Hyperparameters

	B . Proofs of Theoretical Results
	B.1 . Proof for Theorem 1
	B.2 . Proof for Theorem 2
	B.3 . Proof for Lemma 1
	B.4 . Proof for Lemma 2

	C . Gradients of Contrastive regularization Functions

