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Evaluating the Small-World-Ness 
of a Sampled Network: Functional 
Connectivity of Entorhinal-
Hippocampal Circuitry
Qi She, Guanrong Chen & Rosa H. M. Chan

The amount of publicly accessible experimental data has gradually increased in recent years, which 
makes it possible to reconsider many longstanding questions in neuroscience. In this paper, an efficient 
framework is presented for reconstructing functional connectivity using experimental spike-train data. 
A modified generalized linear model (GLM) with L1-norm penalty was used to investigate 10 datasets. 
These datasets contain spike-train data collected from the entorhinal-hippocampal region in the brains 
of rats performing different tasks. The analysis shows that entorhinal-hippocampal network of well-
trained rats demonstrated significant small-world features. It is found that the connectivity structure 
generated by distance-dependent models is responsible for the observed small-world features of the 
reconstructed networks. The models are utilized to simulate a subset of units recorded from a large 
biological neural network using multiple electrodes. Two metrics for quantifying the small-world-ness 
both suggest that the reconstructed network from the sampled nodes estimates a more prominent 
small-world-ness feature than that of the original unknown network when the number of recorded 
neurons is small. Finally, this study shows that it is feasible to adjust the estimated small-world-ness 
results based on the number of neurons recorded to provide a more accurate reference of the network 
property.

Developing mathematical models to describe how a mammalian nervous system functions is crucial to neuro-
science, medicine, and bio-engineering. However, bridges between existing statistical studies of behaviors and 
large-scale mechanistic modeling initiatives have yet to be built. Recently, a number of high-quality electrophys-
iological recording databases, such as the Collaborative Research in Computational Neuroscience (CRCNS) pro-
gram1, have been made publicly accessible for computational neuroscience research. Yet, there do not seem to 
be comparative studies which investigate the neural dynamics and the underlying network topology in different 
parts of the nervous system by examining the recordings published in these databases within a general modeling 
framework. The approach taken in the present study is to begin with deriving a data-driven input-output model 
and its corresponding network topology of a brain sub-region from the electrophysiological data, before proceed-
ing to look into behavior.

Studies have identified small-world features - short path lengths and large clustering coefficients in biological 
neural networks2. However, the current noninvasive neural imaging techniques are unable to capture the whole 
brain’s activity on a neuronal level, particularly for the case of functional connectivity3. Functional connectivity 
can be well quantified based on statistical dependencies, such as transfer entropy, coherence, and correlations. 
It incorporates the information from the structural connectivity, which is developed from axon and dendrite 
formation, and contributes to the region specific local circuitry functions of the brain4. To investigate the brain 
activities on the neuronal level, only limited portions of brain tissues could be analyzed even using the best availa-
ble invasive techniques5,6. Such techniques, e.g. multi-electrodes commonly used in recording electrophysiology, 
are sampling only some of the neurons from a large regional network. Therefore, the resulting network topology is 
only a sub-graph of the original network. Previous studies have focused on how to derive representative samples 
from large real networks7,8, this is because some properties such as average path lengths cannot be found effi-
ciently from the huge graphs. Yet, there is a lack of complex network studies investigating whether the properties 
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derived from a sampled network can represent the original network accurately on the neuronal level. Hence, this 
paper investigates how the multi-electrode sampling method used in experiments can influence the small-world 
features obtained. To compare the small-world features between the original network (ON) and the sampled 
network (SN), a quantitative method describing the small-world-ness has to be identified. It needs to be validated 
for an objective comparison of significance in small-world-ness based on path lengths and clustering coefficients. 
Performance evaluation of the new metrics through a simulated distance-dependent probability model, which 
describes the multi-electrode sampling method9, is therefore crucial.

This paper presents perhaps the first comparative study of the functional network topology, analyzing 
spike-train datasets collected from rats performing various different tasks. The study focuses on the 
entorhinal-hippocampal area, an important brain region for learning and memory1. The graph of network con-
nectivity was constructed in two steps. First, we characterized the local neural circuits from multiple time series 
spike trains using a generalized linear model (GLM) with regularization terms, instead of merely pairwise meas-
ures10. System dynamics were captured by the kernels reconstructed from the weighted sum of Lageurre basis 
functions. Such a technique also significantly reduces the number of parameters to be estimated. Second, after the 
graph of the connectivity was estimated, we analyzed its structural properties using graph theory. The resulting 
graph of the entorhinal-hippocampal region demonstrated small-world properties. We then evaluated the perfor-
mance of two metrics for quantifying the small-world-ness of the sampled network and simulated a large network 
using the distance-dependent probability model. We found that we overestimated the small-world-ness using the 
multi-electrode method when the number of sampled neurons was smaller than 100. Below 100 the first metric, 
Sw, performs unstably while the second metric, ⁎Sw, shows consistent results - overestimation. Finally, based on the 
topology of the recorded neurons, we evaluated the small-world-ness of the functional network. For a more pre-
cise reference of the network property, we developed a means to adjust the small-world-ness measure based on 
the number of sampled neurons. In addition, as the ability to control the reconstructed network is critical to guide 
the dynamics of the whole network, we have also studied network reconstructed from real datasets to find the 
“key” nodes to structurally control the entire system.

Results
Model Estimation. This study investigates the relationship among neurons with firing rates higher than 
0.5 Hz. The K-S plot and the prediction accuracy provide us with parameters for model verification. The param-
eters selected as significant were used to reconstruct the neural network model. Figure 1 presents the recon-
structed functional network from the Rat #3 (ec016) recorded for 28 minutes in session 437 (ec016.437). Before 
the recording, the rat had trained on the wheel task 8 times. Our reconstructed functional network contains 
36 neurons across 4 regions in entorhinal-hippocampual area and, in each region, the neurons are nearly fully 
connected, which shows a strong regional small-world feature. Although the structural (anatomical) connec-
tivity at hippocampus is relatively simpler than most of the other brain regions, the functional connectivity of 

Figure 1. Reconstructed Cellular Functional Network. The arrows correspond to the number of electrodes 
inserted into CA1, EC3, EC4, EC5 regions. Each region is highlighted by a green circle. Blue dots represent 
neurons, and red lines indicate the connections between neurons within a region. Yellow lines highlight the 
connections between regions.
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entorhinal-hippocampual network is still sophisticated12. The functional connectivity that we derived from the 
experimental datasets reflected the actual relationships between neural activities at different regions of entorhinal 
cortex (EC) and hippocampal CA1 region.

EC and CA1 Form a Significant Small-world Network. Data collected from different rats performing 
various experimental tasks were used to reconstruct the corresponding functional connectivity graphs. In Table 1, 
the true positive (TP) is the accuracy rate of predicting the spike train having a spike. The true negative (TN) 
corresponds to the accuracy for having no spike. We use Receiver Operating Characteristic (ROC) curve to deter-
mine the threshold to get the highest TP and TN. Table 1 shows that the reconstructed network has a small aver-
age path length and a very high average clustering coefficient (‘1’ means that neighbors are fully connected). Both 
suggest that the entorhinal-hippocampal regions studied are small-world networks. Also, the Rat #2 in ec013.578 
session underwent more training sessions than Rat #3 in ec016.437, which shows more significant small-world 
features in this network. As shown in the last 3 rows in Table 1, the more training Rat #4 had in Bigsquare task, the 
more connections established in the final reconstructed network.

Validation Using K-S Plot. The models are statistically validated. An example K-S plot is shown in Figure 2. 
The K-S plot (solid) line lies within the dashed horizontal lines with 95% confidence. The second column shows 
insignificant autocorrelation between the transformed rescaled times. Both suggest that the estimated model was 
sufficient for this neuronal output13.

Minimum Input Nodes to Control Network. As shown in Fig. 3, when the size of the reconstructed 
network is small, one can find a perfect matching in the directed graph, which means only one node in the net-
work can control the dynamics of the whole network. As more neurons become involved in the network, more 
input nodes (driver nodes) need to be controlled. More complex network require more driver nodes to control the 
whole network in entorhinal-hippocampal regions of rats.

Session ID Task #Training #Neurons Regions TP TN D * PL ** CC ***

ec012ec.187(Rat #1) Mwheel 10 13 EC3 EC5 75.5% 92.1% 9.38 1.22 0.81

ec012ec.188(Rat #1) Mwheel 10 7 EC3 EC5 73.3% 90.9% 5.71 1.05 0.95

ec012ec.189(Rat #1) Mwheel 10 11 EC3 EC5 76.5% 92.8% 8.73 1.12 0.89

ec012ec.212(Rat #1) Mwheel 10 6 EC3 EC5 84.9% 80.8% 2.00 1.87 0.39

ec013.533(Rat #2) Linear 10 43 EC3 EC4 EC5 CA1 74.2% 90.3% 20.8 1.51 0.57

ec013.578(Rat #2) Wheel 10 28 EC3 EC4 EC5 CA1 74.9% 88.9% 20.9 1.22 0.79

ec016.437(Rat #3) Wheel 8 36 EC3 EC4 EC5 CA1 79.2% 80.3% 14.8 1.58 0.50

ec014.215(Rat #4) Bigsquare 1 25 EC2 EC3 EC5 CA1 80.1% 92.0% 20.6 1.21 0.79

ec014.260(Rat #4) Bigsquare 3 53 EC2 EC3 EC5 CA1 80.0% 93.1% 38.2 1.26 0.74

ec014.277(Rat #4) Bigsquare 4 64 EC2 EC3 EC5 CA1 84.2% 95.0% 46.9 1.25 0.76

Table 1.  Accuracy of prediction and properties of the reconstructed functional network for 10 sessions. 
*Average Degree. **Average Path Length. ***Average Clustering Coefficient.

Figure 2. (a) K-S plot of one example neuron from session ec012ec.187. Straight dashed lines in K-S plot are 
the 95% confidence bounds; (b) Autocorrelation plot of subsequent transformed values. Blue lines are the 95% 
confidence bounds without correlation.
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Simulating the Topology of a Biological Neural Network. The actual synaptic connections between 
two neurons were shown to depend on their physical distance9,14, which leads us to use two distance-dependent 
models to simulate a neural network and make comparisons between them. Our results show that this idea can 
help form small-world properties very well: (1) small average path lengths and (2) large average clustering coeffi-
cients, which meet with experimental data and our interest in analyzing the small-world features of the sampled 
network compared to the original unknown network. Model #1 is

αλ= + , ( )−P P 1d
0

1

while model #2 is

γ= + . ( )β−P P d 21

Here, d is the distance between two neurons. The parameters α and λ are in (0, 1). If α is 1, the neighbours 
are certainly connected by edges with length 1. If α <  1, the global connection depends on both parameters as 
shown in Fig. 4(a,b). As λ increases from zero, the expected number of long-range associations increases and α 
determines the initial states of the probability of connections among neighbors, with negligible influence on the 
longest range to establish connections.

One significant difference between these two models is the final state, which is the probability of connec-
tion at longer range. Figure 4(c,d) shows the effect of varying the parameters of model #2. We set γ equals to 1. 
When β increases, the final state is decreasing but it is larger than 0. Model #2 provides a condition when the 
range between two neurons is long, they can form a connection with a higher probability when compared with 
model #1. Model #2 works to change the initial states of connections by adjusting γ and gives a big tolerance to a 
long-range connection formation. The biases P0 and P1 in these two models are used to adjust the performance of 
the outputs, and without loss of generality, we set them to 0 in the following discussion.

We simulated a biological neural network based on the above distance-dependent probability mod-
els in a three-dimensional space, which reflects the actual relationship better than one-dimensional or 
two-dimensional grids that neglected unique spatial properties of entorhinal-hippocampal structure. Although 
one or two-dimensional grids is convenient mathematical derivation of graph properties, intensive simulations 
of three-dimensional model would reveal more realistic graph properties of biological neural networks. Six 
electrodes were randomly inserted into this space to measure neurons extracelluarly. The number of electrodes 
inserted in the experimental datasets is different across the sessions. An average number of electrodes (six) was 
included in the simulations. Only neurons close to the electrodes would be sampled.

Performance of Two Metrics for Describing Small-world-ness. The distance-dependent probability 
model #1 and #2 both indicate that the longer distance between two neurons lowers the connection probability. In 
each simulation, 500 randomly distributed neurons were generated as test nodes. A distance threshold l was set. 
When the distance between two neurons is larger than l, they have a probability Pout to form a connection; other-
wise, they are connected with a probability Pin. Normally, Pin >  Pout. Figure 5 shows the influence of different sets 
of Pin and Pout on PL  and CC . When the sum of these probabilities are larger, PL  is smaller and CC  is higher. 
Note that when Pin is increased in the first 5 groups, the slopes of PL  and CC  are smaller than that when 
increasing Pout in the last 3 groups. Then a linear model is used to fit PL  and CC  using both Pin and Pout respec-
tively. The results could be described by

= . − . × − . × ( )PL P P2 004 0 842 0 160 3out in

Figure 3. Minimum Input Nodes for 10 sessions. #MN is the number of matching nodes in the reconstructed 
network, #MIN is the number of minimum input nodes to control the whole network. #MN +  #MIN is the total 
number of neurons involved in the reconstructed network.



www.nature.com/scientificreports/

5Scientific RepoRts | 6:21468 | DOI: 10.1038/srep21468

and

= . + . × + . × . ( )CC P P0 003 0 674 0 232 4out in

Here, R2 are 0.9994 and 0.9897 respectively, which show that PL  and CC  have strong linear relationships 
with the two connection probabilities, Pin and Pout. We have simulated 50 random graphs adjusting the local 
region of Pin, which can accurately represent the PL  and CC  of those derived from experimental data as sum-
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Figure 4. Connection probability for two distance-dependent models with different λ, β, α, γ. (a,b) show 
the performance of connection probability with different λ or α of model #1; (c,d) show the performance of 
connection probability with different β or γ of model #2.

Figure 5. Performance of distance-dependent model. 8 groups were explored to analyze different 
combinations of Pin and Pout influencing PL , CC  respectively.
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marized in Table 1. We used genetic algorithm to perform global optimization to minimize the differences of 
patterns ( PL  and CC ) between experimental and simulated networks, which does not rely on the initial values 
of Pin and Pout. As shown in Table 2, our model is sufficient for providing us with similar properties as experimen-
tal data, especially when the size of network is large (N ≈  50).

Without loss of generality, we selected Pin =  0.6 and Pout =  0.1 to analyze the performance of the two 
small-world-ness metrics. As shown in Fig. 6, the metrics Sw of ON and SN are both larger than 1, which indicates 
that ON and SN are small-world networks. Sw of ON is significantly different from the base value 1, with P-value 
(P) of t-test close to 0, lower than the significance level 0.05. For Sw of SN, compared with base value 1, P ≈  0, and 
compared with Sw of ON, P =  0.00014. For ⁎Sw of ON, compared with base value 0, P =  0. When compared with 
base value 0, P =  0.05 for ⁎Sw of SN, and compared with ⁎Sw of ON, P ≈  0. Yet, the small-world-ness is overestimated. 
The metric ⁎Sw provides more information about the network properties. When ⁎Sw of ON is 0.49, it indicates that 
ON is a weak small-world network. Actually, the Sw of ON is 1.32, slightly larger than 1, so we can not consider it 
as a strong small-world network. However, Sw can not convey information clearly as there is no limit on the values 
taken by Sw. The metric ⁎Sw of SN is 0.05, so it is more like a small-world network as compared with ON. This case 
shows that, based on the distance-dependent probability model, ⁎Sw conveys much more information, and can 
distinguish the properties of different networks clearly.

The values displayed in Fig. 7 are the calculated values of averaging 50 realizations with the 6 electrodes ran-
domly inserted in a three-dimensional space. Then, we found that the standard deviance of Sw and ⁎Sw for ON is 
0.0013 and 0.0005, while the SN is 0.63 and 0.25, respectively, indicating that Sw is very sensitive to the positions 
of electrodes when the network size is small. In real experiments, the electrodes are inserted without much prior 
knowledge to aid the estimation of the small-world-ness, so a consistent metric is preferred to describe this prop-
erty and then justify whether we overestimate or underestimate the small-world features. In Fig. 7, we list the 
details of 50 trials, which show the differences of small-world-ness for SN and ON. Sw varies a lot in different trails. 
However, the performance of ⁎Sw is consistent over 50 trials. It shows that we consistently overestimated the 
small-world-ness when using SN except for one case.

In reality, only the neurons distributed around each electrode can be sampled in experiments. Hence, the 
ability of each electrode to detect electrical signal determines the number of sampled neurons. We simulated 
different Pin and Pout connection probabilities to see how the two small-world-ness metrics are changed with the 
increase in the percentage of sampled neurons. In the three-dimensional space, we inserted six electrodes to 

Case

Experimental Data Our Model

PL CC PL 1 CC 1

ec012ec.187 1.22 0.81 1.31 0.75

ec012ec.188 1.05 0.95 1.21 0.97

ec012ec.189 1.12 0.89 1.14 0.97

ec012ec.212 1.87 0.39 1.89 0.41

ec013.533 1.51 0.57 1.49 0.54

ec013.578 1.22 0.79 1.20 0.83

ec016.437 1.58 0.5 1.60 0.45

ec014.215 1.21 0.79 1.22 0.82

ec014.260 1.26 0.74 1.25 0.76

ec014.277 1.25 0.76 1.25 0.77

Table 2.  Simulated small world patterns.

Figure 6. Small-world-ness of the original and the sampled networks described by two metrics. (a) Sw larger 
than ‘1’ indicates it is a small-world network; (b) ⁎Sw close to ‘0’ indicates it is a small-world network, close to ‘1’ 
or ‘− 1’ presents it is more like a random or lattice network.
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sample neurons around them. We set a threshold l′ , and only the neurons distributed within the range l′  of the 
electrode can be sampled. By enlarging this threshold, more neurons can be recorded. Figure 8, (a) −  ( f  ) suggest 
that, when the percentage of sampled neurons is increasing, the ⁎Sw of SN is always smaller than that of ON. This 
demonstrates that ⁎Sw overestimates the small-world-ness of ON based on SN. Figure 8, (g) −  (l) indicate that when 
the percentage of sampled neurons is below 20% (100 neurons), the Sw of SN is smaller than that of ON, but it 
would quickly increase to the peak, giving an indication of overestimating the small-world-ness. However, when 
the number of sampled neurons increases, the Sw of SN is close to that of ON. Figure 8 also shows that ⁎Sw can give 
a consistent overestimation in the small-world-ness feature from SN. However, it converges to the 
small-world-ness of ON with higher sampling percentage. On the other hand, Sw is unable to provide us with a 
consistent result when the number of sampled neurons is small. Yet, Sw converges to the actual small-world-ness 
more quickly than ⁎Sw.

Estimation of Actual Small-world-ness Based on Sampled Topology. As the ⁎Sw gives us a consistent 
and promising method to describe the small world feature of the network in multi-electrode sampling case, we 
use it as a quantitative method to evaluate the small-world-ness. To mimic experimental situation, we should 
estimate the number of neurons in the measured region. The region is approximate to a cuboid. The overall aver-
age density of the brain is around 9.2 ×  104 neurons/mm3 and 7.2 ×  108 synapses/mm3 15. The edge density is there-
fore around 8.5%. Here we have 4 shanks with intershank distance around 200 μm, and the electrodes measured 
approximately a column in 50 μm radius. Thus, we can calculate the length of the piece of tissue measured to be 
around 780 μm, the width is approximately 320 μm, and the height of tissue measured is around 100 μm. The 
approximate number of neurons is around 2296. If a tighter tissue measurement is adopted, less neurons will be 
included in the regions measured. We simulated different sizes of networks (N =  500, 1000, 1500, 2000, 2500) with 
various combinations of Pin and Pout, and then sampled different numbers of neurons from networks to find the 
relationship between the small-world-ness of the original network and that of the sampled network. The 
distance-dependent model configuration is straightforward to simulate networks with similar properties as bio-
logical networks, such as edge density, and is also convenient to form small world networks. The combination of 
Pin and Pout ensures that we can simulate a variety of edge density of brain network. We take Pin =  0.25 and 
Pout =  0.05 to get the edge density about 8.32% (≈ 8.5%) as an example in Fig. 9.

The percentage error (σ) of our simulated network is calculated by the small-world-ness of original network 
⁎

Ŝw and sampled network ⁎Sw using

σ =
−

× %.
( )

⁎ ⁎

⁎
Ŝ S

S
100

5
w w

w

In Fig. 9, we intend to find the relationship between percentage error and the number of sampled neurons no 
matter what the size of original network is. Two-term exponential function was selected to fit our simulated data. 
The general model of our fitted function is

σ = ( ) = ⋅ + ⋅ . ( )⋅ ⋅f x a e c e 6b x d x

Coefficients of the equation are a =  1.564, b =  − 0.080, c =  0.279, d =  − 0.006, within 95% confidence bounds. 
Root mean squared error (RMSE) is 0.060, and R2 is 0.8494, which indicate that the fitted model can capture the 
relationship between the percentage error and the number of sampled neurons. Finally, we can make an adjust-
ment to the previous result to infer the true small-world-ness 

⁎
Ŝw of original network as following
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Figure 7. Differences of the small-world-ness between the original and the sampled networks. Details of 50 
trials with different multi-electrode positions. Green lines indicate the small-world-ness of ON, and red 
triangles are that of SN. (a,b) show the performance of Sw and ⁎Sw.
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σ= ⋅ ( + ), ( )
⁎ ⁎Ŝ S 1 7w w

= ⋅ ( + ⋅ + ⋅ ). ( )⋅ ⋅⁎ ⁎Ŝ S a e c e1 8w w
b x d x

Substitute equation (21) into equation (8), we can get the final model to calculate the actual small-world-ness,
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Figure 8. Performances of the two small-world-ness metrics with increasing sampling percentage and 
several combinations of two connection probabilities. Green lines indicate the small-world-ness of ON, and 
red triangles are that of SN.

Figure 9. Percentage error of small-world-ness estimated from sampled networks. Different combinations 
of the size of networks were analyzed.
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Thus, ⁎Sw of sampled network could be adjusted by equation (9) to infer actual small-world-ness. By exploring 
edge density probabilities from 5.8% to 23%, which is consistent with estimation of cortical connectivity from 
pair-wise cell recordings16, the corresponding range of adjustment can be identified for reference.

In Table 3, the results are adjusted accordingly, and the small-world networks identified remain to be 
significant.

Discussion
The reconstructed networks in this study show that the neural network in the entorhinal-hippocampal region of 
well-trained rats demonstrate small-world features, which are consistent with some previous studies17,18. Such 
small-world network has been observed not only at the regional level but also at the neuronal level16,18. However, 
few previous studies have been conducted on constructing networks based on multi-neuron recordings of local 
circuits during behavioral tasks. We focused on the entorhinal-hippocampal region at the level of cells when a 
rat was performing a task for several rats with different tasks. Our results on small-world properties of networks 
reconstructed from individual neurons are consistent with previous studies17. However, while their methods are 
suitable for reconstructing small networks, sparse GLM is more desirable when estimating larger numbers of 
parameters if more neurons are involved in the network. Furthermore, complex network studies, which inves-
tigate whether the properties derived from the sampled network could accurately represent the original net-
work accurately at the neuronal level, are lacking. We have, therefore, compared two popular metrics estimating 
small-world-ness based on a multi-electrode sampled network. Finally, we estimated the true small-world-ness 
of the original unknown network based on the number of neurons recorded. Our results also show that, when the 
network size is small, it can be controlled with a few nodes, where these networks are homogeneous and dense. 
When the network size is increasing, it becomes much more difficult to control the whole network.

We have also compared the similarities and the differences of neural networks at different training stages. 
As shown in Table 1, Rat #1 did the same task Mwheel for 10 times, the size of reconstructed network is similar. 
Although the placement of electrodes and training time are the same for Rat #2 for example, we found that for 
different tasks, the size of the reconstructed network is quite different. Furthermore, when the training time 
increases for the same task like Rat #4, more neurons and more connections are involved in the functional net-
work, which is in agreement with previous studies19. The results show us that when the rats conducted different 
tasks, their brain functional networks showed significant small-world features. However, different tasks or differ-
ent training stages influenced the size of reconstructed network. With the further development of statistical mod-
els for network reconstructions in the future, we hope to be able to understand more about functional anatomy 
of cell assemblies. Instead of thresholding a binary matrix as in our case, the model should work directly with 
both directed and weighted networks. Our sparse kernel GLM to reconstruct functional connectivity provides a 
topology for analysis of other network properties such as the relationship between neuronal firing patterns and 
community modules. When the size of a reconstructed neural network increases, detecting communities can 
provide valuable information for understanding biological systems20.

We have observed that the graph theory has been commonly used to analyze large-scale networks such 
as different brain regions in neuroscience, but very few studies analyzed networks at the neuronal level. Also, 
only limited portion of neurons could be recorded by multi-electrode techniques. When the original network 
is sparsely sampled, the average path lengths and average clustering coefficients are quite different from that of 
the actual network. Therefore, we have utilized several quantitative methods to evaluate the small-world-ness. 
In this paper, we test the performance of two commonly used small-world-ness metrics based on a widely used 
subsampling scheme. After intensive simulations based on the distance-dependent probability model, a quanti-
fiable relationship between the error in the estimated small-world-ness and the number of sampled neurons has 
been identified. Along the way, we have found possible adjustments to the small-world-ness measures to reflect 
the actual network properties from sampled data. Such rules were then applied to adjust the small-world-ness 

Session ID #Neurons ⁎Sw
⁎

Ŝw

ec012ec.187(Rat #1) 13 0.0201 [0.0286 0.0365]

ec012ec.188(Rat #1) 7 0 0

ec012ec.189(Rat #1) 11 0.0038 [0.0059 0.0086]

ec012ec.212(Rat #1) 6 − 0.0357 [− 0.2887 0.0799]

ec013.533(Rat #2) 43 0.1716 [0.2174 0.2422]

ec013.578(Rat #2) 28 0.0352 [0.0475 0.0500]

ec016.437(Rat #3) 36 0.2288 [0.3005 0.3377]

ec014.215(Rat #4) 25 0.1020 [0.1384 0.1621]

ec014.260(Rat #4) 53 0.0451 [0.0553 0.0603]

ec014.277(Rat #4) 64 0.0429 [0.0515 0.0565]

Table 3.  Small-world-ness adjustment on 10 sessions. ⁎Sw Small-world-ness of sampled network. 
⁎

Ŝw Small-
world-ness of original network when the edge density is from 5.8% to 23%.
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measures of the reconstructed microcircuit network in the earlier analysis of experimental data. In the range 
around average edge density observed in the brain, the corrected measures indicate the EC-CA1 circuitry is 
indeed a small-world network. Our results show that one can use the number of sampled neurons to estimate a 
more accurate small-world-ness compared to that of sub-graph, which could be applied to the studies of other 
small-world networks when there are only sampled data available.

Methods
Experimental Data. The datasets, curated from CRCNS1, contain multi-unit recordings from the entorhi-
nal-hippocampal regions of 11 rats when the animals were conducting different behavioral tasks. The data was 
obtained from 442 recording sessions, and in each session the animal finished one of 14 behavioral tasks. The 
details of analyzed sessions are shown in Table 4. The selected sessions contain 4 different rats doing 4 tasks and 
the number of recorded neurons number ranges from 25 to 105. The neurons were recorded from 5 different 
brain regions. The selected sessions can help us do comparative studies. The neurons with firing rates less than 
0.5 Hz and isolated ones in final reconstructed network are left out.

Generalized Linear Model. Spike trains can be viewed as point processes21. The conditional intensity func-
tion λ ( ( ))t H t  based on the firing probability H(t) in the past can generate an instantaneous firing rate, which can 
be explained as

λ =
+ ∆ − =

∆∆→
t H t

Pr N t N t H t
( ( )) lim

[ ( ) ( ) 1 ( )]
, (10)0

where N(t) denotes the number of events which occurred within the time interval [0, t]22. We take each neuron’s 
spiking activity as the output, and the spike trains from all the other neurons as the input, to establish a GLM. The 
estimated coefficients can be regarded as coupling strengths between the output neuron and input neurons. One 
can estimate the coefficients using the GLM as

∑∑λ τ τ= + −
τ= =

f t k k x t( ( )) ( ) ( ),
(11)i

n

N M
n

n0
1 0

( )

where k0 is a scalar zeroth-order kernel function, and k(n) are first-order kernel functions describing the relation-
ship between the output neuron i.’ s spike probability λi(t) and the n-th input xn(t). Without loss of generality, the 
first-order model will be adopted for demonstration in this session. Here, is a known link function. Since the 
firing rate of neuron i obeys a Gaussian distribution, the equation (11) can be written as

∑∑λ τ τ( ) = . − . ×




− − ( ) ( − )





. ( )τ= =

( )t erf k k x t0 5 0 5
12

i
n

N M
n

n0
1 0

Global Basis Functions. From equation (11), it can be seen that the number of parameters to estimate is 
N ×  (M +  1) +  1. Thus, if a long memory of the neuron is taken into consideration, meaning M is large, too many 
estimated parameters need much computational efficiency. A common method to reduce the number of model 
coefficients is the functional expansion technique, which first decomposes the kernel functions k(n)(τ) into

∑τ τ≈
=

k c j b( ) ( ) ( ),
(13)

n

j

J
n

j
( )

1

( )

where τ ∈ ,M[0 ]. Substituting equation (13) into (11), one gets

Session ID N0* N** Percentage Regions*** Task

ec012ec.187(Rat #1) 25 13 52% EC3 EC5 Mwheel

ec012ec.188(Rat #1) 25 7 28% EC3 EC5 Mwheel

ec012ec.189(Rat #1) 25 11 44% EC3 EC5 Mwheel

ec012ec.212(Rat #1) 20 6 30% EC3 EC5 Mwheel

ec013.533(Rat #2) 85 43 51% EC3 EC4 EC5 CA1 Linear

ec013.578(Rat #2) 87 28 32% EC3 EC4 EC5 CA1 Wheel

ec016.437(Rat #3) 75 36 48% EC3 EC4 EC5 CA1 Wheel

ec014.215(Rat #4) 124 25 20% EC2 EC3 EC5 CA1 Bigsquare

ec014.260(Rat #4) 75 53 71% EC2 EC3 EC5 CA1 Bigsquare

ec014.277(Rat #4) 105 64 61% EC2 EC3 EC5 CA1 Bigsquare

Table 4.  Number of neuronal units recorded in 10 experiment sessions. *The number of experimental 
recorded neurons. **The number of neurons in reconstructed network. ***The recorded regions.
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∑∑λ = +
= =

f t c c j v t( ( )) ( ) ( ),
(14)

i
n

N

j

J
n

j
n

0
1 1

( ) ( )

where ( )( )v tj
n  is the convolution of the j-th basis function and the n-th input:

∑ τ τ( ) = ( ) ( − ).
( )τ

( )

=
v t b x t

15j
n

M

j n
0

The number of model coefficients have reduced to N ×  J, and we can control the order of the basis function J 
to reduce the model complexity. Furthermore, in order to reduce the complexity in estimating bj(τ), one can use 
a global basis to span the entire system memory, which can take place on bj(τ). In this case, bj(τ) is represented as 
a Laguerre basis function23, which has been previously used in modeling physiological systems24. The j-th order 
Laguerre basis function bj(τ) constitutes an orthonormal basis, and ( )( )v tj

n  can be calculated recursively25, as

τ

α τ α τ τ

α α τ τ

α τ α τ

τ τ

( ) =
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−

v
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where α is the Laguerre parameter which determines the rate of decay of the kernel functions. The smaller the α 
is, the faster the vj(τ) function decays. Laguerre basis functions with optimal α reduce the number of coefficients 
to be estimated. Thus, the structure of the GLM can be reconstructed from these functions efficiently.

Sparse Generalized Linear Model. Lasso regularization aims to minimize the sum of squared errors by 
adding a constraint on the sum of absolute values of the parameters to be estimated. It ensures that only the var-
iables significant to the prediction of the output spike trains are selected in the model, thus, avoids overfitting.

Applying the Lasso method to equation (14) results in

∑ ∑∑ ∑∑λ ζ=














( ( )) − − ( ) ( )








+ ( )
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ζ = = =
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A wide range of ζ from 10−5 to 10−1 was explored. For each ζ, deviance was obtained from 5-fold 
cross-validation. The ζ with smallest deviance and the corresponding set of ĉ lasso were selected as the estimated 
coefficients.

Model Validation. The model described in this study can provide the conditional probability of the output 
spikes. The goodness-of-fit was tested with time-rescaled Kolmogorov-Smirnov (K-S) test26. If the model is accu-
rate, it should provide a conditional firing rate function changing the recorded spike-train data into a Poisson pro-
cess, and the plot of the transformed values should be independent and distributed around the 45-degree line on 
the K-S plot. The dependencies between subsequent intervals were inspected using the autocorrelation method.

Graph Analysis. The network established can be described using graph theory. We aim to find the basic and 
essential characteristics of the nodes, edges, and topological structure of the neural circuits. The resulting math-
ematical models will be useful to describe and predict the dynamic behavior of the network. The reconstructed 
network is described by three key measures27:

Degree and Degree Distribution. The degree of one node is defined by the number of edges connected to it. The 
node degrees existing in the network is described by a distribution function P(k), which is the percentage of the 
nodes with degree k among the total number of nodes.

Average Path Length. The path length di,j is the number of edges existing in the shortest path connecting node 
i and j. Average path length (L) is the average over the sum of all di,j. Small L is one of the small-world features.

Clustering Coefficients. The immediate neighbors of one node can form a cluster. This measure shows the actual 
ratio of the number of connections among the neighbors and the maximum number of connections among them. 
A large average clustering coefficient over the whole network is also a small-world feature.

Control of Reconstructed Neural Network. The reconstructed network in this study can be regarded as 
a directed graph. After obtaining the reconstructed network from datasets, we are interested in finding the “key” 
neurons which can take charge of the whole network. In 1970s, Lin et al. proposed the idea of structural control-
lability28 based on the linear time-invariant (LTI) systems. In 2011, Liu et al.11 studied directed networks based on 
structural controllability. The fundamental equation of a LTI system is:

( ) = ⋅ ( ) + ⋅ ( ), ( )X t A X t B u t 18
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where ∈X RN  is the state vector, ∈u RM is the input vector, ∈ ×A RN N  is the state matrix, and ∈ ×B RN M is the 
input matrix. The element aij in the state matrix A is 0, if there is no link from node j to node i. Because the param-
eters in both A and B matrices are either independent free ones or zero, A and B are called structured matrices. 
The structured properties show that in a real system, if one can fix the parameters to some values so that the sys-
tem is controllable, then the system is structurally controllable.

In Liu et al.11, it is proved that in order to fully control a network of size N, the minimum number of input 
vertices (Ni) needed is related to the size of maximum matching (M*) in the corresponding digraph:

⁎= = − , . ( )N N N Mmax{ 1} 19i D

If the directed graph has a perfect matching, the minimum input vertice is 1; otherwise, it is equal to − ⁎N M .
In an undirected graph, a matching M is an independent edge set without common vertices. In a directed 

graph, an edge subset M is a matching if none of the edges therein share a common starting vertex or a common 
ending vertex. We find the maximum matching of a directed graph by transforming it into an undirected bipar-
tite graph. The Hopcroft-Karp algorithm is chosen to determine the maximal matching in the corresponding 
transformed bipartite graph as this algorithm is both accurate and efficient for the small size neuronal network 
commonly recorded (< 100 neurons).

Approaches to Describe Small-world-ness. Our study shows that the reconstructed functional neural 
network presents significant small-world features due to its large average clustering coefficient CC  and small 
average path length PL . Although these two parameters have been widely adopted to identify a small-world 
network29, they were not defined for comparing the small-world-ness among different networks. For example, 
network A has larger CC  but also larger PL  than network B, so we can not tell which network shows stronger 
small-world-ness. Thus, it is necessary to use a quantitative measure to describe the small-world feature. In an 
earlier study, the significance in small-world-ness of a network could be described by the following metric30

= × ,
( )

S C
L

L
C 20w

r

r

where Cr and Lr are CC  and PL  from the random graph with the same number of nodes and edges as that of the 
reconstructed network. A small-world network usually has S 1w , which should meet 

 1C
Cr

 and ≈ 1L
Lr

. 
However, this metric is sensitive to the size of network, and it becomes larger as the size of network increases. 
These drawbacks in metric Sw have been tackled by another metric to describe the small-world-ness31. It focuses 
on analyzing whether the measured network is more like a regular lattice or a random graph. The Watts and 
Strogatz model was proposed to produce a small-world network which had both large CC  as with the corre-
sponding regular lattice and small PL  as with the random graph. The new metric is based on these two proper-
ties, and the new measure is

= − ,
( )

⁎S L
L

C
C 21w

r

l

where Cl is the CC  from the corresponding regular lattice. When the new metric is close to 0, the network shows 
stronger small-world-ness feature, which means that C ≈  Cl and L ≈  Lr. When ≈⁎S 1w , the network is more like a 
random graph. Whereas, when ≈ −⁎S 1w , it has characteristics like a regular lattice. This metric is not sensitive to 
the size of network. We consider both these two metrics for measuring the small-world-ness of the network 
model.
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